ANLAGE A

VERWENDUNGSANLEITUNG

UND

TRAGFÄHIGKEITSTABELLEN

H+P Ingenieure GmbH & Co. KG Kackertstr. 10 52072 Aachen

Tel. 02 41.44 50 30 Fax 02 41.44 50 329 www.huping.de

Prof. Dr.-Ing. Josef Hegger Dr.-Ing. Naceur Kerkeni Dr.-Ing. Wolfgang Roeser

TYPENBERECHNUNG BGW TRANSPORTANKER TEIL 3: AUFSTELLANKER

Auftraggeber: BGW-Bohr GmbH

Kastanienstr. 100

97854 Steinfeld

Aufsteller: Dr.-Ing. N. Kerkeni

Dipl.-Ing. C. Bergholz

Projekt: TP07-22-3

Datum: 20.03.2014

Diese Typenberechnung umfasst 82 Seiten und 1 Anlage (7 Seiten).

INHALTSVERZEICHNIS

1	VERA	NLASSUNG UND ZIELSETZUNG	5
2	LITER	ATUR	6
3	FORM	ELZEICHEN	7
4		ΓELLANKER	11
		gemeines	11
		kerbeschreibung	12
		aterial	15
	4.3.1	Ankerstahl	15
		Betonstahl	15
	4.3.3	Beton	15
		nstruktive Anforderungen	16
	4.4.1	Allgemeines	16
		Betonfestigkeitsklassen	16
		Einbaubedingungen Aussparungskärper	16 17
	4.4.4	Aussparungskörper Hebezeug	17
		lastungsarten (Lastfälle)	19
		ndestabmessungen und Mindestabstände	20
		wehrung	22
	4.7.1	Allgemeines	22
		Zugverankerungsbewehrung	22
		Grundbewehrung	23
	4.7.4		23
	4.7.5	Randbewehrung	24
	4.7.6	Schrägzugbewehrung	25
	4.7.7	Aufrichtbewehrung	26
	4.7.8	Zusammenstellung der Bewehrung	27
5	LAST <i>E</i>	NNAHMEN	28
	5.1 All	gemeines	28
	5.2 Eig	genlasten	28
	5.3 Sc	halungshaftung	28
	5.4 Dy	namikfaktor	29

6			RHEITSKONZEPT	30
			undlage	30
			wirkungen	30
	6.2.		Grundlagen	30
	6.2.		Lastfall Abheben mit Schalungshaftung	31
	6.2.		Lastfall Transport	31
	6.2.		Lastfall Aufrichten	31
			derstände	32
			herheitsbeiwerte	32
			enzwerte	33
	6.6	iva	chweise	34
7	BEI	ΜE	SSUNGSKONZEPT	35
			stfälle/Kraftgrössen	35
			aftgrössen	36
			gmodell	38
	7.4	Tra	gelemente	40
8	TRA	١GF	ÄHIGKEITEN	42
	8.1	Anl	kerstahl	42
	8.1.	1	Maßgebende Stahltragfähigkeit	42
	8.1.	2	Normalkrafttragfähigkeit der Ösenflanken	43
	8.1.	3	Normalkrafttragfähigkeit des Ösenscheitels	44
	8.1.	4	Querkrafttragfähigkeit des Ankers	45
	8.2	Lol	kale Lasteinleitung	47
	8.3	Be	tonausbruch	49
	8.3.	1	Allgemeines	49
	8.3.	2	Betonausbruch auf der Bauteiloberseite	49
	8.3.	3	Betonabplatzungen an den Bauteilseiten	51
	8.3.	4	Betonausbruch unter Querzuglasten	52
	8.4	Zu	gverankerungsbewehrung	55
	8.5	Gru	und- und Steckbügelbewehrung	58
	8.5.	1	Allgemeines	58
	8.5.	2	Lastfall Zentrischer Zug	58
	8.5.	3	Spaltzugtragfähigkeit LF Zentrischer Zug	62
	8.5.	4	Lastfall Schrägzug	63
	8.6	Scl	hrägzugbewehrung	66
	8.7	Ra	ndbewehrung	68
	8.7.	1	Lastfall Zentrischer Zug	68
	8.7.	2	Lastfall Schrägzug	70

H+P Ingenieure GmbH & Co. KG	Seite 4 von 82
Inhaltsverzeichnis	TP07-22-3 BGW RKS-SA/SE
8.8 Aufrichtbewehrung	72
8.9 Betonpressung Ringkupplung	74
8.9.1 Tragfähigkeit LF Zentrischer Zug	74
8.9.2 Tragfähigkeit LF Schrägzug	77
9 VERSUCHSAUSWERTUNG	78
9.1 Allgemeines	78
9.2 Materialfestigkeiten	78
9.3 Rechnerische Traglasten	80
9.4 Versuchslasten	80
9.5 Auswertung	80
9.6 Versuchsbewertung	81
9.7 Auswertungstabelle	81
ANLAGE A TRAGFÄHIGKEITSTABELLEN	

1 VERANLASSUNG UND ZIELSETZUNG

In der vorliegenden Typenberechnung erfolgt eine Berechnung und Bemessung der BGW-Transportanker vom Typ Aufstellanker RKS-SA (beidseitiger Aufstellanker) und RKS-SE (einseitiger Aufstellanker).

Es werden die Tragfähigkeiten und zulässigen Belastungen auf zentrischen Zug, Schrägzug und Querzug sowie die erforderlichen Mindestbauteilabmessungen, Ankerabstände und Bewehrungsquerschnitte für die lokale Lasteinleitung berechnet und zusammengestellt.

Die Nachweise der Anschlagmittel, der Ausgleichsgehänge und der Lastweiterleitung sowie die globale Bauteilbemessung sind nicht Gegenstand dieser Typenberechnung.

2 LITERATUR

- [1] DIN EN 1990 inkl. NA: Grundlagen der Tragwerksplanung. Dezember 2010.
- [2] DIN EN 1992-1-1 inkl. NA: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Januar 2011.
- [3] DIN EN 1993-1-1 inkl. NA: Bemessung und Konstruktion von Stahlbauten -Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Dezember 2010.
- [4] DIN 15018-1 Krane Teil 1: Grundsätze für Stahltragwerke, Berechnung. Stand: November 1984
- [5] EOTA: ETAG 001 Metalldübel zur Verankerung im Beton Anhang C: Bemessungsverfahren für Verankerungen. Stand: November 2006
- [6] CEN/TC 229/WG 4 "Precast concrete products": Design and use of Inserts for Lifting and Handling of Precast Concrete Elements – Technical Report – Draft 9. Stand: Oktober 2006
- [7] DIN SPEC 1021-4-1: Bemessung der Verankerung von Befestigungen im Beton Teil 4-1: Allgemeines; Deutsche Fassung CEN/TS 1992-4-1: 2009. August 2009.
- [8] DIN SPEC 1021-4-2: Bemessung der Verankerung von Befestigungen im Beton Teil 4-2: Kopfbolzen; Deutsche Fassung CEN/TS 1992-4-2: 2009. August 2009.
- [9] VDI/BV-BS Richtlinie 6205: Transportanker und Transportankersysteme für Betonfertigteile. Entwurf Stand August 2009
- [10] H+P Ingenieure GmbH & Co. KG: TP07-22-8 Versuchsbericht zu den Ausziehversuchen an BGW-Transportankern. 18.12.2008
- [11] H+P Ingenieure GmbH & Co. KG: TP07-22-9 Ösenzugversuche an BGW-Transportankern. 18.05.2011
- [12] H+P Ingenieure GmbH & Co. KG: B10-07 Schrägzugversuche mit Dehnungsmessstreifen an BGW-Transportankern. 06.08.2010
- [13] MFPA Leipzig GmbH: Prüfbericht PB 1.2/10-118-2. Prüfung von Transportankern, Typ Aufstellanker, Laststufe 22,0 t blank. 28.02.2011
- [14] TÜV Rheinland LGA Bautechnik GmbH: Prüfbericht Nr. -69612614/01-. Zugversuche an BGW-Ringkupplungen und BGW-Transportankern-Zweiloch. 07.10.2009
- [15] Dr.-Ing. Christian Petersen: Stahlbau. 3. Auflage 1993

3 FORMELZEICHEN

Geometrische Größen

A_f haftende Schalungsfläche

a_{RL} Mindestachsabstand der Anker zum Rand in Bauteillängsrichtung Mindestachsabstand der Anker zum Rand in Bauteilquerrichtung

a_z Mindestzwischenabstand der Anker

a_{s.g} Flächenquerschnitt der Grundbewehrung

A_{S,G} Querschnitt der Grundbewehrung A_{S,Q} Querschnitt der Aufrichtbewehrung

A_{s,z} Querschnitt der Zugverankerungsbewehrung

A_{Sch} haftende Schalfläche

b Ankerbreite

b_A Breite des Aussparungskörpersb_{BK} Breite (Dicke) der Ringkupplung

c_{min} Mindestbetondeckung

c_{nom} Nennmaß der Betondeckungd_A Dicke des Aussparungskörpers

D_{min} Biegerollendurchmesser nach DIN 1045-1, Tabelle 23
 d_{br.Z} Biegerollendurchmesser der Zugverankerungsbewehrung

d_L Durchmesser (Breite) des Ösenlochsd_R Durchmesser des Ringkupplungsriegels

d_{RK} Durchmesser der Ringkupplung

d_{s,G}Bewehrungsstabdurchmesser Grundbewehrungd_{s,O}Bewehrungsstabdurchmesser Aufrichtbewehrung

d_{s.7} Bewehrungsstabdurchmesser Zugverankerungsbewehrung

D_{min} Mindestbauteildicke (Wandstärke)

f Ösenflankenbreite

g Abstand der Ösenlöcher
h₁ Höhe des oberen Ösenlochs
h₂ Höhe des mittleren Ösenlochs
h₃ Höhe des unteren Ösenlochs
h₄ Höhe des Aussparungskörpers

h_{ef} effektive Verankerungstiefe der Anker im Beton

H_{min} Mindestbauteildicke h_K Mindestbauteilhöhe, Versuchskörperhöhe

k Ankerkopfabstand zur Bauteiloberfläche

l Ankerlänge

l_b Verankerungslänge

Länge des Versuchskörpers

I₀ Gesamtlänge der Aufrichtbewehrung

I _V	Projizierte, vertikale Schenkellänge der Zugverankerungsbewehrung
I_Z	Gesamtlänge der Zugbewehrung
n	Anzahl der Bewehrungspositionen
S	Ösenscheitelhöhe
S ₁	Spreizung der Aufrichtbewehrung
t	Ankerstahlblechdicke
V	Volumen der Betonschalen
Z	Schrägzugfaktor
α	halber Spreizungswinkel der Verankerungsbewehrung
α	halber Spreizungswinkel der Ankerschenkel
β	Neigungswinkel der Lastrichtung zur Ankerachse bei Schrägzug
δ	Neigung der gekröpften Aufrichtbewehrung
ϵ_{R}	Neigung der Ringkupplung zur Horizontalen im LF Querzug

Baustoffkenngrößen

f_{bk}	charakteristischer Wert der Verbundspannung
f_{ck}	charakteristischer Wert der Zylinderdruckfestigkeit des Betons
$f_{ck,cube}$	charakteristischer Wert der Betonwürfeldruckfestigkeit
$f_{cc,cube}$	Druckfestigkeit des Betons an 150 mm Würfeln (Messwert)
$f_{cc,cyl}$	Zylinderdruckfestigkeit des Betons (abgeleiteter Messwert)
$f_{cc,cyl,equ}$	äquivalente Zylinderdruckfestigkeit des Betons (abgeleitet aus den Messwerten der Spaltzugfestigkeit)
f_{cpk}	Betonteilflächenpressungsfestigkeit
f _{ctk;0.05}	charakteristischer Wert des 5%-Quantils der Betonzugfestigkeit
f_{ctm}	Mittelwert der Betonzugfestigkeit
f_{sk}	charakteristischer Wert der Streckgrenze des Betonstahls
f_{uk}	charakteristischer Wert / Mindestwert der Zugfestigkeit des Ankerstahls
f_{yk}	charakteristischer Wert der Streckgrenze des Ankerstahls
F_Rk	rechnerische Ankertraglast im Versuch
N_{Rk}	charakteristische Ankernormaltraglast
$N_{Rk,A,F}$	Ankernormaltraglast inf. Tragfähigkeit der Ösenflanken
$N_{Rk,A,S}$	Ankernormaltraglast inf. Tragfähigkeit des Ösenscheitels
$N_{Rk,C,L}$	Ankernormaltraglast inf. Tragfähigkeit auf seitlichem Betonausbruch
$N_{Rk,C,O}$	Ankernormaltraglast inf. Tragfähigkeit auf oberseitigen Betonausbruch
$N_{Rk,G}$	Ankernormaltraglast inf. Stahltragfähigkeit der Grundbewehrung
$N_{Rk,LE}$	Ankernormaltraglast inf. Tragfähigkeit der lokalen Lasteinleitung
$N_{Rk,Z,b}$	Ankernormaltraglast inf. Verbundtragfähigkeit d. Zugverankerungsbew.
$N_{Rk,Z,s}$	Ankernormaltraglast inf. Stahltragfähigkeit d. Zugverankerungsbew.
R_k	allgemeiner Bauteilwiderstand

3 Formelzeichen

V_{Rk.C.T} Ankernormaltraglast inf. Tragfähigkeit auf oberseitigen Betonausbruch

im LF Querzug (transversaler Betonausbruch)

α₁ Beiwert der Verankerungslänge

γ_{Beton} Wichte von Stahlbeton

η Verhältnis zwischen rechnerisch zulässiger Last und Nennlast

η_U Bruchsicherheitsverhältnis zwischen Bruchlast u. maßg. rechn. Traglast

 ψ_{Q} Beiwert für Betonausbruchkegel in Bauteilquerrichtung

Kraftgrößen

A Abstützkraft am Ankerende im LF Querzug

B Rückhängekraft der Aufrichtbewehrung im LF Querzug

F vertikale Gehängekraft, Versuchslast

F_{adh} Schalungshaftkraft

F_G Eigengewichtskraft eines Betonelements

F_o Ankerlast

F_u Maximale Versuchslast / BruchlastF_{zul} zulässige Ankerlast (allgemein)

H horizontale Ankerlast (β =90°) / Horizontalkraftkomponente

N vertikale Ankerlast ($\beta=0^{\circ}$) / Vertikalkraftkomponente

 N_N Nenntraglast der Anker auf zentrische Zuglasten ($\beta \le 30^\circ$) N_{zul} zulässige, charakteristische, zentrische Ankerzuglast ($\beta \le 30^\circ$)

q_{adh} Flächenwert der Schalungshaftung

Q Querzuglast orthogonal zur Bauteilebene Q_N Nenntraglast der Anker auf Querzuglasten

Q_{zul} zulässige Anker-Querzuglast

S Ankerlast im LF Schrägzug (β>30°)

 $S_{\mbox{\tiny N}}$ Nenntraglast der Anker auf Schrägzuglasten ($\beta{>}30^{\circ}$)

 S_{zul} zulässige Anker-Schrägzuglast (β >30°) Z Ankerlast im LF Zentrischer Zug (β ≤30°)

 Z_{zul} zulässige Ankerlast (LF Zentrischer Zug ($\beta \leq 30^{\circ}$))

 $\begin{array}{ll} \sigma & & \text{Normalspannung} \\ \sigma & & \text{Normalspannung} \\ \psi_{\text{dyn}} & & \text{Dynamikfaktor} \end{array}$

Sonstige Größen

v_h Hubgeschwindigkeitγ Globalsicherheitsbeiwert

γ_A Globalsicherheitsbeiwert Ankerstahl (Stahlbruch)

γ_c Globalsicherheitsbeiwert Betonausbruch/Verbundversagen

3 Formelzeichen

 γ_{D} Globalsicherheitsbeiwert Gebrauchstauglichkeit

γ_s Globalsicherheitsbeiwert Betonstahlversagen (Fließen)

Indizes

A Ankerstahl

b Verbund Betonstahl-Beton

B Steckbügelbewehrung
C Beton / Betonausbruch

F Ösenflanke

G Grundbewehrung (Bewehrungsmatte)

k Charakteristischer WertL lateral (seitlicher blowout)LE Lokale Lasteinleitung

max Maximum
min Minimum
mind Mindestwert

O oben (oberseitiger Betonausbruch)

Q Querzug

R Randbewehrung

RS Randbewehrung bei Schrägzuglast

Rk charakteristischer Widerstand

s Betonstahl S Ösenscheitel

T transversal (Betonausbruch unter Querzuglast)

Z Zugbewehrung zul zulässiger Wert

4 AUFSTELLANKER

4.1 ALLGEMEINES

Die Aufstellanker gehören zur Gruppe der Transportanker. Transportanker sind zum Zweck des Transports temporär genutzte Einbauteile in Betonfertigteilen. Die Transportanker werden bei der Herstellung der Fertigteile mit in den Beton eingegossen. Die Aufstellanker erfordern eine zusätzliche lokale und globale Bewehrung, die zusammen mit dem Bewehrungskorb infolge Bauteilbemessung vor der Betonage in der Fertigteilschalung einzubauen ist.

Transportanker dienen nach dem Erhärten des Betons sowohl zum Aufrichten als auch zum Heben und Transportieren von Fertigteilelementen. Das Anheben der Elemente erfolgt mittels Einzelseilen, eines schrägen Seilgehänges oder eines Traversengehänges. Die Seile werden über spezielle Anschlagmittel in den freiliegenden Teil der Transportanker eingehängt. Nach der Montage der Fertigteile kann der freistehende Ankerteil mit Ortbeton vergossen werden. Dabei verbleiben die Transportanker in den Fertigteilelementen. Transportanker sind keine Dauerbefestigungselemente.

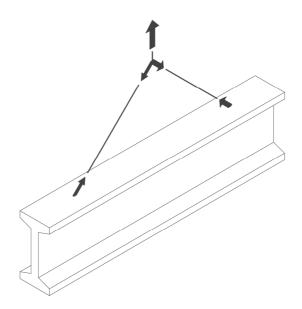


Bild 1: Fertigteilelement mit eingebauten Transportankern und schrägem Seilgehänge

4.2 ANKERBESCHREIBUNG

Die in der vorliegenden Typenberechnung behandelten Aufstellanker werden in zwei verschiedenen Ausführungen hergestellt, als beidseitiger Aufstellanker SA (Bild 2) und als einseitiger Aufstellanker SE.

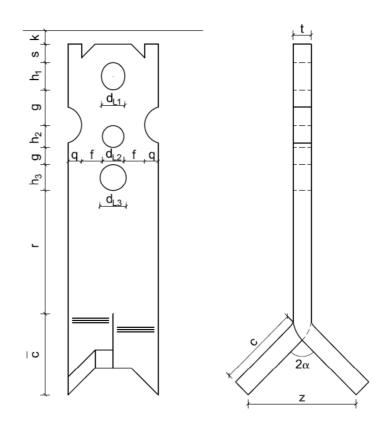


Bild 2: Bezeichnung der Ankerabmessungen RKS-

SA Tabelle 1: Ankerübersicht

			Nennlast				
Anker	Laststufe	Lastgruppe	Zug	Schrägzug	Querzug		
			N _N	S _N	Q _N		
RKS-SA/E-1,4-20	1,4 t	2,5 t	14 kN	11,2 kN	7 kN		
RKS-SA/E-2,5-23	2,5 t	2,5 (25 kN	20 kN	12,5 kN		
RKS-SA/E-4,0-27	4,0 t	F.O.+	40 kN	32 kN	20 kN		
RKS-SA/E-5,0-29	5,0 t	5,0 t	50 kN	40 kN	25 kN		
RKS-SA/E-7,5-32	7,5 t	10.0+	75 kN	60 kN	37,5 kN		
RKS-SA/E-10,0-39	10,0 t	10,0 t	100 kN	80 kN	50 kN		
RKS-SA/E-12,5-50	12,5 t		125 kN	100 kN	62,5 kN		
RKS-SA/E-17,0-50	17,0 t	26,0 t	170 kN	136 kN	85 kN		
RKS-SA/E-22,0-50	22,0 t		220 kN	176 kN	110 kN		

Die Anker sind jeweils in neun Laststufen verfügbar. Jeder Laststufe in Tonnen [t] ist eine Ankernennlast N_N in [kN] zugeordnet (Tabelle 1). Mehrere Laststufen sind in einer Lastgruppe gebündelt. Die Nennlast N_N entspricht der zulässigen Ankertraglast bei zentrischer Zuglast.

Tabelle 2: Äußere Ankerabmessungen [mm]

	Ankergeometrie									
Anker	Länge	Breite SA	Breite SE	Dicke	Spreizung	Ankermitte- Bauteilok.	Ankerrand- Bauteilok.			
	I	b _{SA}	b _{SE}	t	Z	k	k ₁			
RKS-SA/E-1,4-20	200 mm	55 mm	45 mm	6 mm	60 mm	10 mm	5 mm			
RKS-SA/E-2,5-23	230 mm	55 mm	45 mm	12 mm	70 mm	10 mm	5 mm			
RKS-SA/E-4,0-27	270 mm	75 mm	60 mm	15 mm	80 mm	10 mm	5 mm			
RKS-SA/E-5,0-29	290 mm	75 mm	60 mm	17,5 mm	80 mm	10 mm	5 mm			
RKS-SA/E-7,5-32	320 mm	120 mm	100 mm	15 mm	110 mm	15 mm	6 mm			
RKS-SA/E-10,0-39	390 mm	120 mm	100 mm	20 mm	110 mm	15 mm	6 mm			
RKS-SA/E-12,5-50	500 mm	150 mm	120 mm	20 mm	140 mm	15 mm	9 mm			
RKS-SA/E-17,0-50	500 mm	150 mm	120 mm	25 mm	140 mm	15 mm	9 mm			
RKS-SA/E-22,0-50	500 mm	150 mm	120 mm	30 mm	140 mm	15 mm	9 mm			

Die maßgebenden Abmessungen sind in Bild 2 bezeichnet sowie in Tabelle 2 und Tabelle 3 aufgeführt.

Der beidseitige und der einseitige Aufstellanker unterscheiden sich durch die beidseitig bzw. einseitige Einkerbung im oberen Ankerbereich zur Aufnahme der Aufrichtbewehrung (Bild 2).

Tabelle 3: Innere Ankerabmessungen [mm]

	Ankergeometrie									
Anker	Schenkellänge		Lochbreite			Einkerbung	Ösen	flanke		
	С	<u>c</u>	d _{L1}	d _{L2}	d _{L3}	q	f _{SA}	f _{SE}		
RKS-SA/E-1,4-20	42,4	30	14	15	15	10	15,0	10,0		
RKS-SA/E-2,5-23	49,5	35	14	15	15	10	15,0	10,0		
RKS-SA/E-4,0-27	56,6	40	18	17	19	12,5	22,8	15,3		
RKS-SA/E-5,0-29	56,6	40	18	17	19	12,5	22,8	15,3		
RKS-SA/E-7,5-32	77,8	55	26	24	29	20	38,0	28,0		
RKS-SA/E-10,0-39	77,8	55	26	24	29	20	38,0	28,0		
RKS-SA/E-12,5-50	99,0	70	35	35	35	30	42,5	27,5		
RKS-SA/E-17,0-50	99,0	70	35	35	35	30	42,5	27,5		
RKS-SA/E-22,0-50	99,0	70	35	35	35	30	42,5	27,5		

	Ankergeometrie									
Anker	Ösenscheitel	tel Lochhöhe			Lochabstand	Lochabstand	Abst. Kerbe	Abst. Kerbe		
	s	h ₁	h ₂	h ₃	g ₁	g ₂	r _{sa}	r _{SE}		
RKS-SA/E-1,4-20	9,0	20	15	15	22	14	45	42,0		
RKS-SA/E-2,5-23	9,0	20	15	15	22	14	45	42,5		
RKS-SA/E-4,0-27	14,0	22	17	19	31	12	70	50,5		
RKS-SA/E-5,0-29	14,0	22	17	19	31	12	70	50,5		
RKS-SA/E-7,5-32	21,0	30	24	29	40	19	90	78,0		
RKS-SA/E-10,0-39	21,0	30	24	29	40	19	90	78,0		
RKS-SA/E-12,5-50	36,0	46	46	46	30	110	90	88,5		
RKS-SA/E-17,0-50	36,0	46	46	46	30	110	90	88,5		
RKS-SA/E-22,0-50	36,0	46	46	46	30	110	90	88,5		

4.3 MATERIAL

4.3.1 Ankerstahl

Die Aufstellanker werden aus Baustahl S355 J2 hergestellt.

Die Streckgrenze f_{yk} des Ankerstahls wird gemäß DIN EN 1993-1 [3] für die Tragsicherheitsnachweise wie folgt angesetzt:

$$f_{vk} = 355 \text{ N/mm}^2$$

Der Ankerstahl muss über DIN EN 1993-1 [3] hinaus folgende erhöhte Mindestzugfestigkeit f_{uk} aufweisen:

$$f_{uk} = 510 \text{ N/mm}^2$$

Bei der Ankerherstellung ist zwingend darauf zu achten, dass der verwendete Baustahl zusätzlich zu den Anforderungen für S355 J2 die Mindestzugfestigkeit $R_m \ge f_{uk}$ einhält.

4.3.2 Betonstahl

Die Verankerungs- und die Zulagebewehrung der Plattenanker besteht aus Betonstahl BSt 500 S/M (A) oder (B).

Die Streckgrenze des Betonstahls f_{sk} wird gemäß DIN EN 1992-1 [2] für die Tragsicherheitsnachweise wie folgt angesetzt:

$$f_{sk} = 500 \text{ N/mm}^2$$

4.3.3 Beton

Die Materialkennwerte von Beton werden für die Tragsicherheitsnachweise gemäß DIN EN 1992-1 [2] gewählt. Es werden die folgenden charakteristischen Kennwerte der Mindestbetonfestigkeitsklasse C12/15 angesetzt:

$$f_{ck,15} = 12 \text{ N/mm}^2$$
 (Druckfestigkeit)
 $f_{ctk,0.05,15} = 1,1 \text{ N/mm}^2$ (5%-Quantil Zugfestigkeit)
 $f_{bk,15} = 2,52 \text{ N/mm}^2$ (Verbundfestigkeit)

4.4 KONSTRUKTIVE ANFORDERUNGEN

4.4.1 Allgemeines

Die Verwendung der Aufstellanker unter Ausnutzung der in dieser Typenberechnung angegebenen Tragfähigkeiten unterliegt den folgenden konstruktiven Mindestanforderungen.

4.4.2 Betonfestigkeitsklassen

Die Mindestfestigkeitsklasse des Betons zum Zeitpunkt des Transports ist C12/15. Der verwendete Beton muss zum Zeitpunkt des Anhebens oder Transports mindestens die charakteristischen Druck- und Zugfestigkeiten (f_{ck} , $f_{ck,cube}$, $f_{ctk,0.05}$) der jeweiligen Festigkeitsklasse nach DIN EN 1992-1-1 [2], Tab. 3.1 aufweisen (vgl. 4.3.3):

 $f_{cc,cube} \ge f_{ck,cube}$ Würfeldruckfestigkeit

 $f_{cct} \ge f_{ctk 0.05}$ Zugfestigkeit (5%-Quantilwert)

4.4.3 Einbaubedingungen

Die Verwendung von Aufstellankern ist für dünne Scheiben vorgesehen. Die Aufstellanker sind dabei stets orthogonal und bündig zur schmalen Bauteiloberfläche einzubauen.

Beim Einbau sind die Mindestrand- und Mindestachsabstände der Anker einzuhalten (vgl. Abs. 4.6). Die Anordnung der Anker muss gewährleisten, dass das Betonelement im Schwerpunkt gehoben werden kann. Es dürfen keine Ankerpaare pro Hebepunkt eingesetzt werden.

Bei der Anordnung von mehr als zwei Aufstellankern ist ein Traversensystem oder ein Ausgleichsgehänge erforderlich, um eine eindeutige Verteilung der Lasten zu gewährleisten (Erzielung statisch bestimmter Systeme).

Das Betonelement ist im Einbinde- und Verankerungsbereich des Ankers mit einer Zugverankerungsbewehrung sowie mit einer Aufrichtbewehrung zu bewehren, die abhängig von der geplanten Beanspruchung zu wählen sind.

4.4.4 Aussparungskörper

Jeder Lastgruppe ist ein Ankeraussparungskörper zugeordnet, der zusammen mit dem Anker bündig zur Bauteiloberseite einbetoniert wird. Der Aussparungskörper hinterlässt im Bauteil am Ankerkopf eine Greifmulde für den Lastabheber.

Tabelle 4: Abmessungen der Aussparungskörper

	Aussparungskörper					
Anker	Höhe	Breite	Dicke			
	h _A	b _A	d _A			
RKS-SA/E-1,4-20	50	105	45			
RKS-SA/E-2,5-23	50	105	45			
RKS-SA/E-4,0-27	60	130	50			
RKS-SA/E-5,0-29	60	130	50			
RKS-SA/E-7,5-32	100	200	70			
RKS-SA/E-10,0-39	100	200	70			
RKS-SA/E-12,5-50	130	260	120			
RKS-SA/E-17,0-50	130	260	120			
RKS-SA/E-22,0-50	130	260	120			

4.4.5 Hebezeug

Die Aufstellanker dürfen nur mit speziellen Lastaufnahmemitteln, den BGW-Ringkupplungen, unmittelbar angehoben und belastet werden. Die Verwendung anderer Hebezeuge wie Haken, Seile oder Ketten zum direkten Anschlag an den Anker ist nicht zulässig. Das Ankuppeln an die Ringkupplung ist mit diesem Hebezeug zulässig.

Die BGW-Ringkupplungen sind in vier Größen für jede Ankerlastgruppe (2,5t, 5t, 10t, 26t) verfügbar. Die Lastgruppen umfassen die Laststufen der Anker bis einschließlich der angegeben Nennlast.

Tabelle 5: Abmessungen der Ringkupplung

	Ringkupplung					
Anker	Rk-Ø Rk-Breite		Riegel-Ø			
	d _{RK}	b _{RK}	d _R			
RKS-SA/E-1,4-20	79	27	13,0			
RKS-SA/E-2,5-23	79	27	13,0			
RKS-SA/E-4,0-27	98	36	16,5			
RKS-SA/E-5,0-29	98	36	16,5			
RKS-SA/E-7,5-32	137	50	23,5			
RKS-SA/E-10,0-39	137	50	23,5			
RKS-SA/E-12,5-50	210	72	32,0			
RKS-SA/E-17,0-50	210	72	32,0			
RKS-SA/E-22,0-50	210	72	32,0			

4.5 BELASTUNGSARTEN (LASTFÄLLE)

Die Aufstellanker können mit zentrischen Zuglasten Z, mit Schrägzuglasten S (Lastneigung quer zur Ankerebene) und mit Querzuglasten Q (Lastneigung parallel zur Ankerebene) beansprucht werden (vgl. Bild 3).

Bei Schrägzugbeanspruchung ist der Neigungswinkel der Last zur Ankerachse (Vertikale) auf β =30° begrenzt, wenn keine Schrägzugbewehrung angeordnet wurde. Bei Bauteilen mit Schrägzugbewehrung ist kein größerer Schrägzugneigungswinkel als β =60° zulässig, wenn ein Schrägseilgehänge verwendet wird. Schrägzugwinkel 60° \leq β \leq 90° sind nur bei Hebevorgängen möglich, bei denen jeder Anker einzeln beansprucht wird (keine Gehänge, je Anker ein Seil / eine Kette erforderlich).

Bei Zug-/Schrägzugbeanspruchung ist der Lastneigungswinkel senkrecht zur Bauteilebene auf γ =10° begrenzt, darüber hinaus liegt Querzugbeanspruchung (γ =10-90°) vor, die eine Aufrichtbewehrung erfordert. Die Neigung von schräger Querzugbeanspruchung ist auf ϵ =45° begrenzt (vgl. Bild 3).

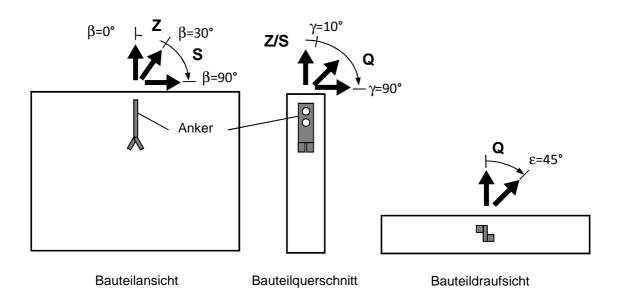


Bild 3: Zulässige Ankerbelastungsrichtungen

4.6 MINDESTABMESSUNGEN UND MINDESTABSTÄNDE

Beim Einbau der Aufstellanker in Betonfertigteilen sind Mindestbauteildicken und -höhen, die Mindestabstände zu den Bauteilrändern und zu anderen Ankern einzuhalten. Neben den Ankerachsabständen a_z sind die Randabstände in Bauteillängsrichtung a_{RL} und in Bauteilquerrichtung a_{RQ} einzuhalten. Dabei sind teilweise unterschiedliche Mindestabstände für die Ankervarianten SA und SE sowie bei der Verwendung der Anker mit oder ohne Zugverankerungsbewehrung zu unterscheiden.

Die Mindestachsabstände der Aufstellanker a_z berücksichtigen die Breite des Betonausbruchkegels (Abs. 8.1.4):

$$a_{z} \geq 3 \tag{1}$$

Der Mindestrandabstand in Bauteillängsrichtung a_{RL} entspricht der Hälfte des Mindestankerzwischenabstands a_7 :

$$a_{RI} = 0.5 a_7$$
 (2)

Die Mindestbauteildicke H_{min} unter Verwendung der Zugverankerungsbewehrung entspricht muss mindestens dem Siebenfachen der Stabdicke der Zugbewehrung entsprechen:

$$H_{min} \ge 7 d_{SZ} = 7 \cdot 8 = 56 mm$$
 (3)

Die Mindestbauteildicke H_{min} entspricht dem doppelten Randabstand a_{RQ} in Bauteilquerrichtung:

$$H_{\min} = 2 a_{RO} \tag{4}$$

Die Mindestrandabstände in Bauteilquerrichtung a_{RQ} ohne Verwendung der Zugverankerungsbewehrung sind in Abhängigkeit von der Betonfestigkeit durch den erforderlichen Widerstand gegen Betonausbruch bestimmt.

Die Mindestabstände a_{RQ} , a_{RL} und a_Z sind bei der Verwendung mit oder ohne Zugverankerungsbewehrung in Tabelle 6 aufgeführt.

Tabelle 6: Mindestankerabstände und Mindestbauteildicken [mm]

	Zwischen-	Längsrand-	Querrandabstand				
Ankergröße	abstand abstand		Mit Zugbe	ewehrung	Ohne Zugbewehrung		
	a _z	a _{RL}	a _{RQ,SA}	a _{RQ,SE}	a _{RQ,SA}	a _{RQ,SE}	
RKS-SA/E-1,4-20	700 mm	350 mm	50 mm	45 mm	50 mm	45 mm	
RKS-SA/E-2,5-23	800 mm	400 mm	60 mm	60 mm	60 mm	60 mm	
RKS-SA/E-4,0-27	950 mm	475 mm	75 mm	70 mm	75 mm	75 mm	
RKS-SA/E-5,0-29	1000 mm	500 mm	80 mm	70 mm	95 mm	95 mm	
RKS-SA/E-7,5-32	1200 mm	600 mm	88 mm	80 mm	125 mm	125 mm	
RKS-SA/E-10,0-39	1500 mm	750 mm	100 mm	100 mm	140 mm	140 mm	
RKS-SA/E-12,5-50	1500 mm	750 mm	120 mm	120 mm	150 mm	150 mm	
RKS-SA/E-17,0-50	1500 mm	750 mm	150 mm	150 mm	200 mm	200 mm	
RKS-SA/E-22,0-50	1500 mm	750 mm	180 mm	180 mm	300 mm	300 mm	

4.7 BEWEHRUNG

4.7.1 Allgemeines

In den folgenden Abschnitten wird die für die lokale Lasteinleitung im Bereich des Aufstellankers erforderliche Bewehrung dargestellt.

Die für die Lastweiterleitung im Bauteil erforderliche lokale Bewehrung und die globale Bewehrung, die sich aus der Bemessung des im Transportfall vorliegenden statischen Systems ergibt, wird im Rahmen dieser Typenberechnung nicht bemessen. Die Bewehrung beider genannter Fälle ist durch den Anwender zu bemessen und in das Bauteil einzulegen.

4.7.2 Zugverankerungsbewehrung

Die Aufstellanker erhalten in Abhängigkeit von der Bauteildicke H <u>optional</u> eine Zugverankerungsbewehrung $A_{s,z}$ in Form einer Stabstahlschlaufe mit der Gesamtlänge I_z , die durch das untere Loch des Ankers geführt wird und die nach unten in das Bauteil reicht. Die Schlaufe ist maximal um den Winkel von $2\alpha = 30^{\circ}$ gespreizt und ist symmetrisch zur Ankerachse einzubauen (s. Bild 4). Die Zugverankerungsbewehrung kann mit geraden oder abgewinkelten Enden zur Verkürzung der Verankerungslänge ausgeführt werden. Bei Verwendung der Zugverankerungsbewehrung ist ggf. eine geringere Mindestbauteildicke erforderlich (Abs. 4.6).

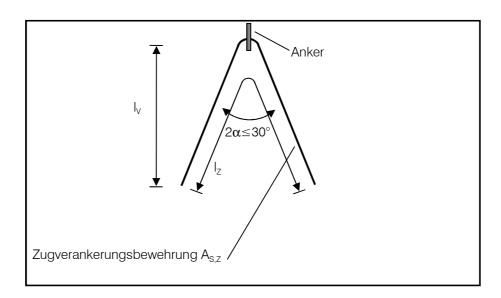


Bild 4: Zugverankerungsbewehrung

4.7.3 Grundbewehrung

Im Ankerbereich ist eine Grundbewehrung $a_{s,g}$ aus Bewehrungsmatten an den Bauteiloberflächen vorzusehen (s. Bild 5).

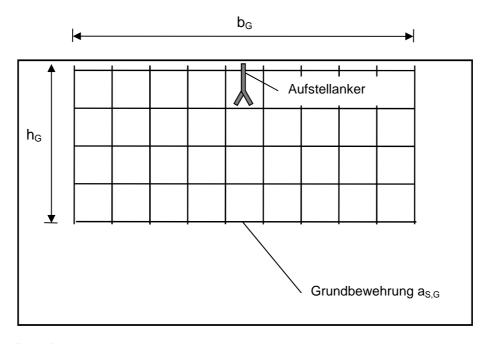


Bild 5: Grundbewehrung

Alternativ kann eine netzförmige Bewehrung aus Stabstahl mit mindestens gleichem Bewehrungsquerschnitt gewählt werden.

In Bauteillängsrichtung muss die Breite der Grundbewehrung $b_{\rm G}$ mindestens dem Mindestachsabstand der Anker $a_{\rm Z}$ entsprechen. Die Grundbewehrung sollte über die gesamte Scheibenhöhe angeordnet werden.

$$b_G \ge a_Z$$
 (5)

4.7.4 Steckbügelbewehrung

Im unmittelbaren Ankerbereich ist eine Steckbügelbewehrung $A_{S,B}$ (s. Bild 6) vorzusehen. Die Steckbügel sind möglichst dicht am Anker anzuordnen, das erste Bügelpaar unmittelbar am Aussparungskörper, die nächsten Stäbe im Abstand von jeweils $e_B=75$ bis 100 mm.

4.7.5 Randbewehrung

An der Bauteilstirnseite ist eine Randbewehrung $A_{S,R}$ (s. Bild 6) vorzusehen. Die Randbewehrung besteht aus zwei Bewehrungsstäben, die an je einer Seite des Ankeraussparungskörpers vorbeigeführt werden.

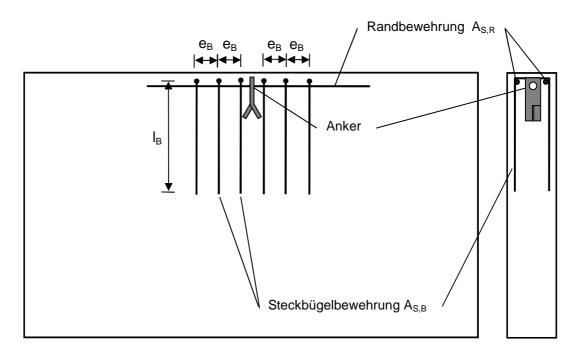


Bild 6: Steckbügel- und Randbewehrung

4.7.6 Schrägzugbewehrung

Werden die Anker mit Schrägzuglasten mit Neigung $\beta>30^{\circ}$ beansprucht, ist eine Schrägzugbewehrung $A_{s,s}$ in Form einer Haarnadel vorzusehen, die unmittelbar am Aussparungskörper des Ankers angeordnet wird. Die Schenkel der Schrägzugbewehrung müssen in die entgegengesetzte Richtung der Schrägzugkraft weisen.

Der Biegerollendurchmesser $d_{br,S}$ richtet sich nach der Dicke d_A des Aussparungskörpers. Die Mindestwerte für den Biegerollendurchmesser für Schlaufen D_{min} nach DIN EN 1992-1-1 [2] sind dabei einzuhalten.

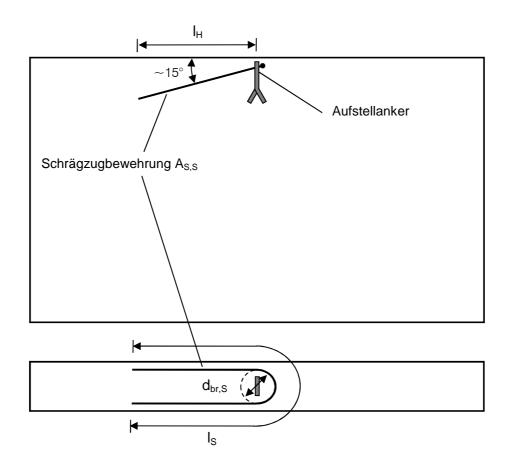


Bild 7: Schrägzugbewehrung

4.7.7 Aufrichtbewehrung

An der Bauteilstirnseite ist eine Querzug- bzw. Aufrichtbewehrung $A_{S,Q}$ in Form von zwei gegenläufigen Stäben mit V-förmiger Kröpfung vorzusehen, die in den Kerben des Aufstellankers geführt wird. Der Biegerollendurchmesser D_{min} nach DIN EN 1992-1-1 [2] sind dabei einzuhalten.

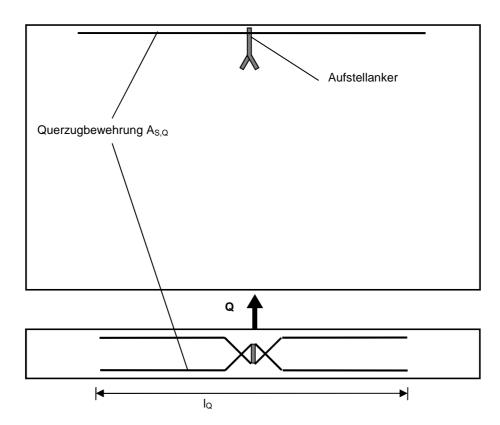


Bild 8: Aufrichtbewehrung

4.7.8 Zusammenstellung der Bewehrung

In Tabelle 7 sind die erforderlichen Stückzahlen, Durchmesser und Stablängen der Grund- und Zulagebewehrung gemäß Abs. 4.7.2 bis 4.7.7 in Abhängigkeit von der Ankergröße und ggf. der Lastrichtung dargestellt.

Tabelle 7: Grund- und Zulagebewehrung der Aufstellanker

	Zugverankerungs- bewehrung (optional)		Grundbewehrung		Zentrischer Zug			
Anker					Randbew.	Steckbügelbewehrung		
	ø	Stablänge	ø	Querschnitt	ø	Anzahl	ø	Stablänge
	d _{s,z}	I _z	d _{s,g}	a _{s,G}	$d_{S,R}$	n	d _{S,B}	I _B
RKS-SA/E-1,4-20	10	650	6	188	8	2	6	500
RKS-SA/E-2,5-23	12	1000	6	188	8	2	8	600
RKS-SA/E-4,0-27	16	1200	6	188	10	2	8	700
RKS-SA/E-5,0-29	16	1500	6	188	10	2	10	800
RKS-SA/E-7,5-32	20	1750	6	188	10	4	10	800
RKS-SA/E-10,0-39	20	1900	6	188	12	6	10	800
RKS-SA/E-12,5-50	25	2200	7	257	14	6	10	800
RKS-SA/E-17,0-50	28	2500	8	335	14	6	12	1000
RKS-SA/E-22,0-50	28	3000	9	424	16	6	12	1200

	Schrägzug						Querzug	
Anker	Randbew.	Steckbügelbewehrung			Schrägzugbewehrung		Aufrichtbewehrung	
	ø	Anzahl	ø	Stablänge	ø	Stablänge	ø	Stablänge
	d _{S,R}	n	d _{S,B}	I _B	d _{s,s}	I _s	d _{s,Q}	l _Q
RKS-SA/E-1,4-20	8	4	6	400	6	900	10	700
RKS-SA/E-2,5-23	10	4	8	600	8	1200	12	800
RKS-SA/E-4,0-27	12	4	8	800	12	1200	14	950
RKS-SA/E-5,0-29	12	4	10	800	12	1550	16	1000
RKS-SA/E-7,5-32	12	4	10	800	14	2000	20	1200
RKS-SA/E-10,0-39	14	6	10	1000	16	2300	20	1500
RKS-SA/E-12,5-50	16	6	10	1000	20	2300	25	1500
RKS-SA/E-17,0-50	20	8	10	1100	25	2600	25	1800
RKS-SA/E-22,0-50	25	8	10	1200	25	3000	25	1800

5 LASTANNAHMEN

5.1 ALLGEMEINES

Aufstellanker sind als Transportanker gemäß VDI/BV-BS 6205 [9] auf Beanspruchungen aus Eigengewicht und Schalungshaftkräften zu bemessen. Bei den Einwirkungen sind die Dynamikfaktoren ψ_{dyn} zu berücksichtigen.

5.2 EIGENLASTEN

Die Eigengewichtskraft F_G ist mit der Wichte für Stahlbeton γ_{Beton} und dem Volumen V der Fertigteilelemente wie folgt zu ermitteln:

$$F_G = V \cdot \gamma_{Beton}$$
 $\gamma_{Beton} = 25 \text{ kN/m}^3$ (6)

5.3 SCHALUNGSHAFTUNG

Die Haftungskräfte von Schalungen sind abhängig von der Oberflächenbeschaffenheit und von der geometrischen Struktur der Schalung. Bei überwiegend ebenen Schalflächen sind die Haftungskräfte wie folgt zu ermitteln:

$$F_{adh} = q_{adh} \cdot A_f$$
 mit A_f Kontaktfläche Schalung/Beton (7) und q_{adh} Grundwerte Schalungshaftung

Tabelle 8: Richtwerte für Schalungshaftung

Schalungsart	Schalungshaftung q _{adh}
geölte Stahlschalung	1,0 kN/m²
glatte Holzschalung	2,0 kN/m²
raue Holzschalung	3,0 kN/m²

Bei stark strukturierten Betonkörpern (π -Platten, Kassettendecken) können die Schalungskräfte ein Mehrfaches der üblichen Werte betragen. In Tabelle 9 sind einige Haftungskräfte als Vielfaches des Betonkörpereigengewichts G angegeben.

Tabelle 9: Schalungshaftung in Abhängigkeit des Betonkörpertyps

Betonkörpertyp	Schalungshaftung F _{adh}
π-Platten	2 G
Rippendecken	3 G
Kassettendecken	4 G

5.4 DYNAMIKFAKTOR

Während des Transports der Fertigteilelemente treten infolge ruckartiger Bewegungen dynamische Lasten auf. Die dynamischen Lasten werden über den Dynamikfaktor ψ_{dyn} erfasst. Der Dynamikfaktor ist abhängig vom verwendeten Hebezeug, von der Hubgeschwindigkeit und von den Beschleunigungen beim Anheben, Fahren, Schwenken und Absetzen des Fertigteilelements infolge der Geländebeschaffenheit.

In Tabelle 8 sind die Dynamikfaktoren ψ_{dyn} gemäß VDI/BV-BS 6205 [9] zusammengestellt. Alternativ können die Dynamikfaktoren auch in Anlehnung an DIN 15018-1 [4] bestimmt werden.

Tabelle 8: Dynamikfaktoren gemäß [9]

Randbedingung	Dynamikfaktor ψ _{dyn}
Turmdrehkran, Portalkran, Mobilkran	1,3
Heben und Transportieren auf ebenem Gelände	2,5
Heben und Transportieren auf unebenem Gelände	≥ 4,0

6 SICHERHEITSKONZEPT

6.1 GRUNDLAGE

Die Bemessung der Aufstellanker als Transportanker wird gemäß der Transportankerrichtlinie VDI/BV-BS 6205 [9] auf Basis des Globalsicherheitskonzepts durchgeführt.

6.2 EINWIRKUNGEN

6.2.1 Grundlagen

Die Einwirkungen bestehen aus der Eigengewichtskraft F_{G} der Betonfertigteile und den Haftungskräften F_{adh} (s. Abs. 5). Die Einwirkenden sind je Anker als charakteristische Werte (Gebrauchslasten) zu kombinieren und mit dem Dynamikfaktor ψ_{dyn} gemäß [9] oder DIN 15018-1 [4] zu erhöhen. Die Einwirkung F_{Q} je Transportanker ist im Allgemeinen gemäß [9] wie folgt zu ermitteln:

$$F_{Q} = (\psi_{dvn} \cdot F_{G} + F_{adh}) \cdot z / n$$
 (8)

Dabei ist n die Anzahl der tragenden Transportanker und z der Schrägzugfaktor mit:

In der Regel treten die Kräfte aus dynamischer Beanspruchung und infolge Schalungshaftung nicht gleichzeitig auf.

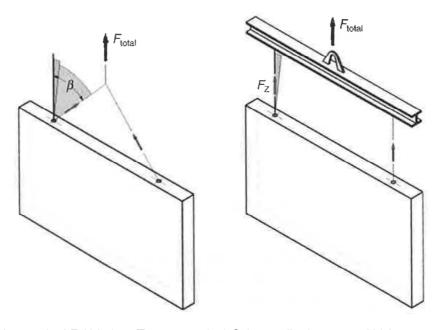


Bild 9: Wandelement im LF Abheben/Transport mit a) Schrägseilgehänge und b) Lasttraverse

Die für die Aufstellanker maßgebenden Lastfälle sind in den folgenden Abschnitten zusammengestellt.

6.2.2 Lastfall Abheben mit Schalungshaftung

Im Lastfall Abheben mit Schalungshaftung beträgt die Einwirkung F_z je Transportanker bei Verwendung gemäß Bild 9:

$$F_z = (F_G + F_{adh}) \cdot z / n$$
 $n = \begin{cases} 2 \text{ ohne Ausgleichsgehänge} \\ 4 \text{ mit Ausgleichsgehänge} \end{cases}$ 10)

6.2.3 Lastfall Transport

Im Lastfall Transport beträgt die Einwirkung F_z je Transportanker bei Verwendung gemäß Bild 9:

$$F_z = \psi_{\text{dyn}} \cdot F_{\text{G}} \cdot z \, / \, n \qquad \qquad n = \left\{ \begin{array}{l} \text{2 ohne Ausgleichsgehänge} \\ \text{4 mit Ausgleichsgehänge} \end{array} \right. \tag{11}$$

6.2.4 Lastfall Aufrichten

Im Lastfall Aufrichten beträgt die Einwirkung F_Q bzw. F_{QZ} je Transportanker bei Verwendung gemäß Bild 10:

$$F_{Q(Z)} = (F_G + F_{adh}) \cdot z / (2 n)$$
 $n = 2$ (12)

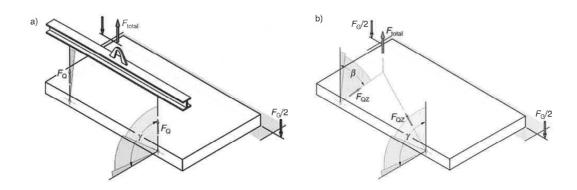


Bild 10: Wandelement im Lastfall Aufrichten mit a) Lasttraverse und b) Schrägseilgehänge

6.3 WIDERSTÄNDE

Die zulässigen Tragfähigkeiten der Belastung R_{zul} sind nach VDI/BV-BS 6205 [9] aus dem Quotienten des charakteristischen Widerstands R_k und dem globalen Sicherheitsfaktor γ zu berechnen:

$$R_{zul} = R_k / \gamma \tag{13}$$

Für die Tragfähigkeitswerte R_K werden die charakteristischen Werte der Widerstände gemäß DIN EN 1992-1-1 [1] und DIN EN 1993-1-1 [3] verwendet.

Für die einzelnen Versagensarten der Baustoffe sind dies die folgenden Kenngrößen:

Ankerstahl	f_{yk}	Streckgrenze
	f_{uk}	Zugfestigkeit
Betonstahl	f_{sk}	Streckgrenze
Beton (Druck)	f_{ck}	charak. Betonzylinderdruckfestigkeit
	$f_{\rm ck,cube}$	charak. Betonwürfeldruckfestigkeit
Beton (Zug)	$f_{\rm ctk,0.05}$	5%-Quantilwert der Betonzugfestigkeit
Beton (Verbund)	f_{bk}	charak. Wert der Verbundtragspannung

6.4 SICHERHEITSBEIWERTE

Für die Ermittlung der zulässigen Lastwerte sind die Globalsicherheitsbeiwerte γ gemäß VDI/BV-BS 6205 [9] zu verwenden. Für die Ankertragfähigkeiten infolge Zug- und Schrägzugbelastung gelten folgende globale Sicherheitsfaktoren:

Ankerstahlbruch	$\gamma_A = 3.0$	(14)
Betonversagen, Verbundversagen	$\gamma_{\text{C}}=2,5$	(15)
Betonstahlversagen	$\gamma_{\rm S}=2.5$	(16)
Gebrauchstauglichkeit	$\gamma_{\rm D}=2.0$	(17)

6.5 GRENZWERTE

Der nominelle Grenzwert der Belastung der Anker wird in Abhängigkeit vom Lastfall durch die Ankernennlast N_N (Zentrischer Zug), S_N (Schrägzug) oder Querzug (Q_N) gebildet (vgl. Abs. 7.1). Die Ankernennlast für Schrägzuglasten S_N entspricht dabei stets 80%, die Nennlasten für Querzuglasten Q_N 50% der Nennlast für Zentrischen Zug. Die Ankernennlasten N_N , S_N bzw. Q_N stellen eine obere Begrenzung der zulässigen Lastwerte infolge aller Versagensarten bzw. Tragfähigkeiten N_{zul} , S_{zul} bzw. Q_{zul} nach Abs. 8 dar.

In Einzelfällen ist es jedoch möglich, dass die zulässigen Lastwerte N_{zul} , S_{zul} bzw. Q_{zul} die Nennlastgrenze N_{N_i} bzw. Q_{N_i} unterschreiten. In diesen Fällen wird als Bemessungsgrenze der jeweils niedrigste Wert für N_{zul} , S_{zul} bzw. Q_{zul} maßgebend:

Es gilt im Lastfall Zentrischer Zug ($\beta \le 30^{\circ}$):

$$N_{zul} = min \begin{cases} N_{N} \\ N_{zul,A,F/S} \\ N_{zul,L,B/Sch/St} \\ N_{zul,C} \\ N_{zul,P} \end{cases}$$
 (18)

Es gilt im Lastfall Schrägzug (30°<β≤45):

$$S_{zul} = \min \begin{cases} S_{N} \\ 0.8 N_{zul,A,F/S} \\ 0.8 N_{zul,L,B/Sch/St} \\ 0.8 N_{zul,C} \\ S_{zul,S,s/b} \end{cases}$$
(19)

Es gilt im Lastfall Querzug ($\gamma > 10^{\circ}$):

$$Q_{zul} = \min \begin{cases} Q_{N} \\ Q_{zul,A} \\ Q_{zul,C} \\ Q_{zul,Q} \end{cases}$$
 (20)

(24)

 $F_Q \leq Q_{zul}$

6.6 NACHWEISE

Der Nachweis, dass die einwirkenden Ankerlasten F_z bzw. F_Q die zulässigen Ankertragfähigkeiten R_{zul} nicht überschreiten, ist in Abhängigkeit vom vorliegenden Lastfall wie folgt zu führen:

$$F \leq R_{zul} \qquad \qquad \text{allgemein} \qquad (21)$$

$$F_Z \leq N_{zul} \qquad \qquad \text{Lastfall Zentrischer Zug } (\beta \leq 30^\circ) \quad (22)$$

$$F_Z \leq S_{zul} \qquad \qquad \text{Lastfall Schrägzug } (30^\circ < \beta \leq 90^\circ) \quad (23)$$

Lastfall Querzug (ε≤45°)

7 BEMESSUNGSKONZEPT

7.1 LASTFÄLLE/KRAFTGRÖSSEN

In der vorliegenden Typenberechnung wird zwischen den äußeren Beanspruchungen der Aufstellanker und den inneren Schnittgrößen, bzw. Tragfähigkeiten unterschieden.

Die äußeren Beanspruchungen in Form von allgemeinen Kräften F gliedern sich in die Lastfälle "zentrischer Zug" Z, "Schrägzug" S und "Querzug" Q, die in der und quer zur Bauteilebene wirken (vgl. Bild 11). Diese Lastfälle Z, S und Q sind wie folgt definiert:

• Zentrischer Zug Z: Belastungen F in Ankerachsrichtung (β =0°) und bis

zu einer Neigung in Bauteilebene von β =30°

• Schrägzug S: Belastungen F mit einer Neigung in Bauteilebene

von β =30° bis β =90° zur Ankerachse

Querzug Q: Belastungen F mit einer Neigung quer zur Bauteil-

ebene bzw. in der Ankerebene von $\gamma=10^\circ$ bis $\gamma=90^\circ$ sowie von $\epsilon=0^\circ$ bis $\epsilon=45^\circ$ ("schräger Querzug") in

der Bauteilebene

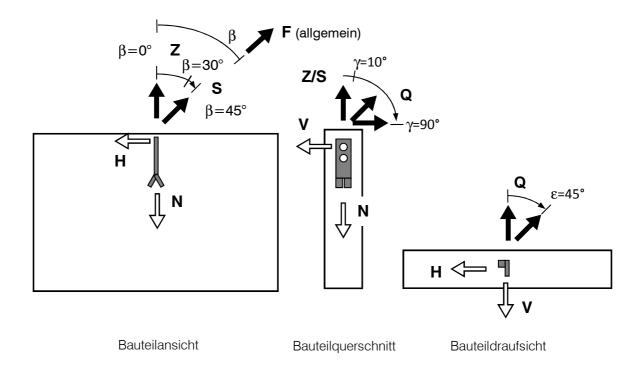


Bild 11: Äußere Lasten F, Z, S, Q und innere Schnittgrößen / Tragfähigkeiten N, H, V

7.2 KRAFTGRÖSSEN

Infolge äußerer Belastungen F entstehen als innere Reaktionskräfte die für die Bemessung des Anker/Bauteilsystems relevanten Schnittgrößen Normalkraft N, Horizontal-kraft H und Querkraft V:

$$N = F \cdot \cos \beta$$
 bzw. (25)

$$N = Q \cdot \cos \gamma \tag{26}$$

$$H = F \cdot \sin \beta$$
 bzw. (27)

$$H = Q \cdot \sin \varepsilon \tag{28}$$

$$V = Q \cdot \cos \gamma \cdot \cos \varepsilon \tag{29}$$

Infolge der je Lastfall Z, S oder Q variablen Neigung β der Belastung ergibt sich für die Schnittgrößen jeweils ein Wertebereich, der im Folgenden mit dem Minimal- und Maximalwert angegeben wird:

• Zentrischer Zug Z:
$$N \begin{cases} \geq Z \cdot \cos 30^{\circ} \approx 0,866 \ Z \\ \leq Z \end{cases}$$
 (30)

$$H \begin{cases} \geq 0 \\ \leq Z \cdot \sin 30^{\circ} = 0.5 Z \end{cases}$$
 (31)

• Schrägzug S:
$$N \begin{cases} \geq 0 \\ \leq S \cdot \cos 30^{\circ} \approx 0,866 \text{ S} \end{cases}$$
 (32)

$$H \begin{cases} \geq S \cdot \sin 30^{\circ} = 0.5 S \\ \leq S \cdot \sin 90^{\circ} = S \end{cases}$$
 (33)

• Querzug Q:
$$N \begin{cases} \geq 0 \\ \leq Q \cdot \cos 10^{\circ} \approx Q \end{cases}$$
 (34)

$$H \begin{cases} \geq 0 \\ \leq Q \cdot \sin 45^{\circ} \approx 0,707 Q \end{cases}$$
 (35)

$$V \begin{cases} \geq Q \cdot \cos 45^{\circ} \approx 0,707 Q \\ \leq Q \end{cases}$$
 (36)

Bei der Bestimmung der zulässigen Beanspruchbarkeiten Z_{zul} , S_{zul} , bzw. Q_{zul} aus den Ankertragfähigkeiten N_{Rk} , H_{Rk} , bzw. V_{Rk} in den Abschnitten 8.1 bis 8.5 werden die jeweils maßgebenden Grenzwerte der Kraftgrößenbeziehungen je Beanspruchungsart eingehalten:

• Zentrischer Zug Z:
$$Z \le \begin{cases} N \\ 2H \end{cases}$$
 (37)

• Schrägzug S:
$$S \leq \begin{cases} 0,80 \text{ N} \\ H \end{cases}$$
 (38)

• Querzug Q:
$$Q \leq \begin{cases} N \\ 1,414 \text{ H} \\ V \end{cases}$$
 (39)

Die Aufstellung berücksichtigt die Zusatzbedingung nach [6], dass die zulässigen Schrägzugkräfte mit maximal 80% und die Querzugkräfte mit maximal 50% des Werts der zulässigen zentrischen Zugkräfte anzusetzen sind (vgl. Abs. 6.5).

7.3 TRAGMODELL

Im Folgenden wird das Tragmodell der Aufstellanker kurz erläutert.

Normalkraft N

Der Lastabtrag der Aufstellanker erfolgt nach Einleitung der vertikalen Abhebekraft über die Ringkupplung in die obere Öse des Ankers. Als erstes Tragelement trägt der obere Ösenscheitel die Last zu den seitlichen Ösenflanken, die diese zum unteren Teil des Ankers führen.

Wird der Aufstellanker mit Zugverankerungsbewehrung verwendet, wird die Ankerlast durch die untere Öse in den Bewehrungsstab (umgekehrter Lastweg Ösenflanken/Ösenscheitel) abgetragen. Die Zugverankerungsbewehrung leitet die Ankerlast über ihre beiden Schenkel mittels Verbundspannungen in den Betonkörper ein. Die Verankerungslänge beginnt unmittelbar am Anker.

Wird der Aufstellanker ohne Zugverankerungsbewehrung verwendet, wird die Last mittels der gespreizten Ankerenden über Teilflächenpressung in den Beton eingetragen.

Über die Grundbewehrung werden die aus der eingeleiteten Ankerkraft ausstrahlenden Spannungen nach unten in den Betonkörper zurückgehängt. Die Verankerung der Grundbewehrung im Beton erfolgt über Verbund unterhalb des rechnerischen Betonausbruchkegels, um eine vollständige Lastabtragung zu gewährleisten.

Durch eine Kombination aus Grund-, Steckbügel- und Randbewehrung wird eine Klammerung des Betonausbruchskörpers erreicht, die geringe Randabstände zulässt.

Die weitere Lastweiterleitung wird im vorliegenden Dokument nicht betrachtet.

Horizontalkraft H

Bei Beanspruchung mit geneigten Zuglasten in der Scheibenebene bzw. senkrecht zur Ankerebene werden die Horizontallastkomponenten H bei geringen Lastneigungen (LF Zentrischer Zug, $\beta \leq 30^{\circ}$) über Pressung zwischen dem Ankerabheber ("Ringkupplung") und dem einbetoniertem Ankeraussparungskörper in den Beton abgetragen.

Bei größeren Lastneigungswinkeln (LF Schrägzug, $30^{\circ} < \beta \le 90^{\circ}$) erfolgt der Lastabtrag der horizontalen Lastkomponente durch Anpressung über die eng um den Aussparungskörper geführte, Schrägzugbewehrung $A_{s,s}$. Diese leitet die horizontale Ankerkraft über Verbundspannungen in den Beton ein. Die eingeleitete Last bildet eine schräg nach unten gerichtete Druckstrebe im Beton aus. Zugehörig entsteht auf dieser der Last

gegenüberliegenden Ankerseite eine vertikale Zugstrebe, die über die Grundbewehrung abgetragen wird.

Die weitere Lastweiterleitung wird im vorliegenden Dokument nicht betrachtet.

Querkraft V

Beim Aufrichten von Bauteilen im Lastfall Querzug entsteht durch die besondere Formgebung des Ankerkopfes keine Abstützung der Ringkupplung am stirnseitigen Beton, sondern am hervorstehenden Grat des Aufstellankers (Bild 12). Dadurch wird der Aufstellanker nur mit Momenten M und Querkräften V beansprucht, jedoch nicht mit Normalkräften N.



Bild 12: Statisches Modell, Schnittgrößen N, V und M unter Querzuglast Q

Die Kräfte werden am Ankerkopfende über die obere Öse eingeleitet und über die Ösenflanken in den hinteren Ankerteil abgetragen. Der Ankerstahl bildet einen Einfeldträger mit Kragarm aus, dessen Stützung die eng um den Aussparungskörper geführte, gekröpfte Aufrichtbewehrung $A_{s,q}$ ist. An der Tragöse übernehmen die Ösenflanken die Biegezug- und Biegedruckkräfte aus der Querlastbiegung. Das hintere Auflager des Einfeldträgers befindet sich am einbetonierten Ankerende. Die gekröpfte Aufrichtbewehrung hängt die vordere Auflagerkraft nach unten in das Bauteil, von wo aus die Last nach oben zurückstrahlt. Die liegende Scheibe verteilt über ihre randnahe Durchstanztragfähigkeit die Querlasten. Die hintere Stützkraft des Ankerendes wird über die Ausbruchtragfähigkeit der Betonüberdeckung abgetragen.

In Bild 12 ist das der Bemessung zu Grunde liegende statische Modell des Aufstellankers dargestellt.

Die Ankerschnittgröße V, die Auflagerkräfte A und B sowie der maßgebende Wert für M betragen:

$$V = Q \tag{40}$$

$$A = Q \cdot x_1 / x_2 \tag{41}$$

$$B = Q \cdot (x_1 + x_2) / x_2 \tag{42}$$

$$M = Q \cdot X_1 \tag{43}$$

7.4 TRAGELEMENTE

Die Berechnung der Ankertragfähigkeiten und die Bemessung der erforderlichen Bewehrungsquerschnitte erfolgt separat für die einzelnen Tragelemente des Anker/Betonkörpersystems in den Abschnitten 8.1 bis 8.5.

Die in Tabelle 9 dargestellten Tragelemente werden hinsichtlich ihrer Widerstände in normaler, horizontaler bzw. transversaler Richtung untersucht und die ermittelten Tragfähigkeiten angegeben. In der Regel werden dabei mehrere Teilelemente bzw. Tragkomponenten eines Elementwiderstands berechnet. Die Tragfähigkeiten der Elemente und Teilelemente wird durch Indizes kenntlich gemacht. So erfolgt z.B. beim Nachweis des Ankerstahls (Index A) separat die Bemessung der Ösenflanken (Index F) und des Ösenscheitels (Index S) auf Stahlbruch. Bei den meisten Bewehrungspositionen wird sowohl die Tragfähigkeit des Bewehrungsquerschnitts auf Stahlfließen (Index s) als auch mit der Verbund im Beton (Index b) nachgewiesen.

Aus den Tragfähigkeiten der Tragelemente in Normalenrichtung N_{Rk} , in Horizontalrichtung H_{Rk} und/oder in Querrichtung V_{Rk} werden mit Hilfe der Globalsicherheitsfaktoren γ gemäß der Abschnitte 6.4 und 6.5 sowie über die Grenzwerte der Kraftgrößenbeziehungen nach Abs. 7.1 die zulässigen Belastungen Z_{zul} für den Lastfall Zentrischer Zug S_{zul} für den Lastfall Schrägzug und Q_{zul} für den Lastfall Querzug bestimmt.

Zuletzt erfolgt der Nachweis, dass die zulässigen Belastungen Z_{zul} , S_{zul} , Q_{zul} in allen Fällen größer ist als die nominelle Ankergrenzlast, die Nennlast N_N (für zentrischen Zug), $S_N=80\%$ N_N (für Schrägzug) bzw. $Q_N=50\%$ N_N (für Querzug) (vgl. Abs. 6.5).

Lastfall					Zentrisc	cher Zug			Schrägzug		Querzug	
Tragalament	1. Index	Teilelement	2. Index	Trag	fähigkeitsricl	htung	zulässigeG	Tragfähig	Tragfähigkeitsrichtg. zulässigeG		Tfk.rtg.	zulässigeG
Tragelement	1. muex	reneiement	z. muex	normal	horizontal	β=30°	renzlast	normal	horizontal	renzlast	quer	renzlast
Ankerstahl	А	Ösenflanke	F	N _{Rk,A,F}	-	I		ı	_		$V_{Rk,A}$	
Alikeistalli	A	Ösenscheitel	S	N _{Rk,A,S}	-	ı		ı	_		ı	
Lokale Lasteinleitung	LE	Pressung auf Ankersch	-									
		Oberseite	o	N _{Rk,C,O}	-	ı		ı	_		ı	
Betonausbruch	С	lateral (Bauteilseite)	L	N _{Rk,C,L}	-	ı	N _N	-	_	S _N	ı	Q_N
		transversal (obere Bauteilseite)	Т	-	-	ı		-	_		V _{Rk,C,T}	
Zugverankerungsbew.	Z	Stahl / Verbund	s / b	N _{Rk,Z,s/b}	-	ı		_	_		ı	
Grundbew. vertikal	G	Stahl	-	N _{Rk,G}	_	-		-	_		-	
Aufrichtbewehrung (Querzugbewehrung)	Q	Stahl	-	-	_	-		-	_		$V_{Rk,Q}$	

8 TRAGFÄHIGKEITEN

8.1 ANKERSTAHL

8 Tragfähigkeiten

8.1.1 Maßgebende Stahltragfähigkeit

In den folgenden beiden Abschnitten erfolgt die Berechnung der Ankerstahltragfähigkeiten der Aufstellanker. Um die Übersichtlichkeit zu wahren, wird vorab das maßgebende Materialversagenskriterium bestimmt.

Die Ankerquerschnitte sind mit γ_A =3,0-facher Sicherheit auf den Widerstand gegen die Überschreitung der Zugfestigkeit und mit γ_D =2,0-facher Sicherheit auf Begrenzung plastischer Verformungen des Stahls zu bemessen.

Bei dem vorliegenden Material S355 J2 wird die Bemessung auf die Stahlzugfestigkeit maßgebend:

$$f_{uk} / \gamma_A = 510 / 3.0 = 170.0 \text{ N/mm}^2$$
 (maßgebend) (44)

$$f_{vk} / \gamma_D = 355 / 2.0 = 177.5 \text{ N/mm}^2$$
 (45)

Im Folgenden werden daher die charakteristischen Stahltragfähigkeiten ausschließlich mit dem Wert der Zugfestigkeit f_{uk} des Ankerstahls bestimmt. Der Nachweis der Begrenzung der plastischen Stahlverformungen ist mit dem Nachweis der Anker auf Stahlbruch damit bereits implizit geführt.

8.1.2 Normalkrafttragfähigkeit der Ösenflanken

Ein Stahlversagen tritt bei Überschreitung der Bruchfestigkeit in den Flanken der Ösen auf. Die charakteristische Tragfähigkeit $N_{Rk,A,F}$ wird über die Summe der Flankenquerschnittsflächen ermittelt:

$$N_{Rk,A,F} = 2 t \cdot f \cdot f_{uk}$$
 mit $f_{uk} = 510 \text{ N/mm}^2$ (46)

Dabei wird für f der maßgebende Wert der Ankertypen SA und SE verwendet:

$$f = \min \begin{cases} f_{SA} \\ f_{SE} \end{cases}$$
 (47)

Die zulässige Normalkraft $N_{\text{zul},A,F}$ und das Sicherheitsniveau $\eta_{A,F}$ betragen:

$$N_{zul,A,F} = N_{Rk,A,F} / \gamma_A$$
 mit $\gamma_A = 3.0$ (48)

$$\eta_{A,F} = N_{zul,A,F} / N_N \ge 100\%$$
(49)

Die Ergebnisse sind in Tabelle 10 zusammengestellt.

Tabelle 10: Ankernormaltraglasten infolge Tragfähigkeit der Ösenflanken

Anker	Blechdicke	Flanken- breite	Flanken- breite	Ankertra	gfähigkeit	Nennlast	Sicherheit
	t	f _{sa}	f _{SE}	N _{Rk,A,F}	N _{zul,A,F}	N _N	$\eta_{\scriptscriptstyle A,F}$
RKS-SA-1,4-20	6 mm	15,0 mm	10,0 mm	61 kN	20 kN	14 kN	146%
RKS-SA-2,5-23	12 mm	15,0 mm	10,0 mm	122 kN	41 kN	25 kN	163%
RKS-SA-4,0-27	15 mm	22,8 mm	15,3 mm	233 kN	78 kN	40 kN	194%
RKS-SA-5,0-29	18 mm	22,8 mm	15,3 mm	272 kN	91 kN	50 kN	181%
RKS-SA-7,5-32	15 mm	38,0 mm	28,0 mm	428 kN	143 kN	75 kN	190%
RKS-SA-10,0-39	20 mm	38,0 mm	28,0 mm	571 kN	190 kN	100 kN	190%
RKS-SA-12,5-50	20 mm	42,5 mm	27,5 mm	561 kN	187 kN	125 kN	150%
RKS-SA-17,0-50	25 mm	42,5 mm	27,5 mm	701 kN	234 kN	170 kN	138%
RKS-SA-22,0-50	30 mm	42,5 mm	27,5 mm	842 kN	281 kN	220 kN	128%

8 Tragfähigkeiten

8.1.3 Normalkrafttragfähigkeit des Ösenscheitels

Der Ösenscheitel am oberen Ankerende wird durch den Riegel der Ringkupplung, der durch das obere Loch geführt wird, auf Lochleibung beansprucht.

Die charakteristische Tragfähigkeit N_{Rk,A,S} der Ankeröse gegen Ausriss des Ösenscheitels wird über einen modifizierten Lochleibungsansatz analog zu DIN EN 1993-1-1 [3] wie folgt angesetzt:

$$N_{Rk,A,S} = \alpha_l \cdot t \cdot d_R \cdot f_{uk}$$
 (50)

Dabei ist d_R der Riegeldurchmesser der Ringkupplung und t die Ankerblechstärke.

Der Beiwert α_l zur Lochleibung ist abhängig vom Ösendurchmesser d_L (Ösenbreite) und der Scheitelhöhe s. Der Ansatz für α_l nimmt Bezug auf Lochleibungsversuche, die in Bild 60b in "Stahlbau" von Petersen [15] dargestellt sind, wurde jedoch an den vorliegenden Ösenzugversuchen (vgl. Dokument TP07-22-9) kalibriert:

$$\alpha_1 = 1.21 \, e_1 / d_1 - 0.23$$
 (51)

$$\alpha_1 = 1.21 (s + d_1 / 2) / d_1 - 0.23$$
 (52)

Tabelle 11: Ankernormaltraglasten infolge Tragfähigkeit des Ösenscheitels

Anker	Scheitel- höhe	Ösen-Ø	Riegel-Ø	Lochleibung	Ankertra	gfähigkeit	Nennlast	Sicherheit
	s	d _{L1}	d _R	α_{l}	N _{Rk,A,S}	N _{zul,A,S}	N _N	$\eta_{A,S}$
RKS-SA/E-1,4-20	9 mm	14 mm	13 mm	1,15	46 kN	15 kN	14 kN	109%
RKS-SA/E-2,5-23	9 mm	14 mm	13 mm	1,15	92 kN	31 kN	25 kN	122%
RKS-SA/E-4,0-27	14 mm	18 mm	17 mm	1,32	166 kN	55 kN	40 kN	138%
RKS-SA/E-5,0-29	14 mm	18 mm	17 mm	1,32	194 kN	65 kN	50 kN	129%
RKS-SA/E-7,5-32	21 mm	26 mm	24 mm	1,35	243 kN	81 kN	75 kN	108%
RKS-SA/E-10,0-39	21 mm	26 mm	24 mm	1,35	324 kN	108 kN	100 kN	108%
RKS-SA/E-12,5-50	36 mm	35 mm	32 mm	1,62	529 kN	176 kN	125 kN	141%
RKS-SA/E-17,0-50	36 mm	35 mm	32 mm	1,62	661 kN	220 kN	170 kN	130%
RKS-SA/E-22,0-50	36 mm	35 mm	32 mm	1,62	793 kN	264 kN	220 kN	120%

Die zulässige Normalkraft N_{zulAB} und das Sicherheitsniveau η_{AB} betragen:

$$N_{zul,A,S} = N_{Rk,A,S} / \gamma_A$$
 mit $\gamma_A = 3.0$ (53)

$$\eta_{AS} = N_{\text{zulAS}} / N_{\text{N}} \ge 100\% \tag{54}$$

Die Ergebnisse sind in Tabelle 11 zusammengestellt.

8.1.4 Querkrafttragfähigkeit des Ankers

Bei der Bemessung des Ankerstahls unter Querlastbeanspruchung sind nur die Momente im Anker zu berücksichtigen (s. Abs. 7.3).

Die maßgebende Beanspruchung des Ankerstahls entsteht im reduzierten Querschnitt im Bereich der Kerbe:

$$\sigma_{A} = M / W_{DI} = V \cdot X_{1} / W_{DI}$$
 (55)

mit
$$W_{pl} = t / 4 \cdot (b - 2 q)^2$$
 Ankertyp SA (56)

$$W_{pl} = t / 4 \cdot (b - q)^2 \qquad \text{Ankertyp SE}$$

Der Hebelarm x₁ entspricht dem Achsabstand der Aufrichtbewehrung und der Ankeroberkante:

$$x_1 = r \tag{58}$$

Die charakteristische Querkrafttragfähigkeit $V_{Rk,A}$ infolge der Ankerstahltragfähigkeit beträgt somit:

$$V_{RkA} = f_{llk} \cdot t \cdot W_{pl} / (4 r) \tag{59}$$

Die zulässige Querkraft $V_{zul,A}$ und das Sicherheitsniveau $\eta_{A,V}$ betragen:

$$V_{zul,A} = V_{Rk,A} / \gamma_A$$
 mit $\gamma_A = 3.0$ (60)

$$\eta_{AV} = V_{zulA} / Q_N \ge 100\% \tag{61}$$

Die Ergebnisse sind für den Ankertyp SA in Tabelle 12 und für den Typ SE in Tabelle 13 zusammengestellt.

Tabelle 12: Querzug-Stahltragfähigkeiten der Aufstellanker Typ SA

Anker	Blechdicke	Restquer- schnitt Kerbe	Widerstands- moment Kerbe	Hebelarm	Ankertra	gfähigkeit	Nennlast	Sicherheit
	t	b _{SA} – 2 q	W_{pl}	$x_1 = r_{SA}$	$V_{Rk,A}$	$V_{zul,A}$	Q_N	$\eta_{\scriptscriptstyle A,V}$
RKS-SA-1,4-20	6 mm	35 mm	1838 mm³	45 mm	21 kN	6,9 kN	7,0 kN	99%
RKS-SA-2,5-23	12 mm	35 mm	3675 mm³	45 mm	42 kN	13,9 kN	12,5 kN	111%
RKS-SA-4,0-27	15 mm	50 mm	9375 mm³	70 mm	68 kN	22,8 kN	20,0 kN	114%
RKS-SA-5,0-29	18 mm	50 mm	10938 mm³	70 mm	80 kN	26,6 kN	25,0 kN	106%
RKS-SA-7,5-32	15 mm	80 mm	24000 mm³	90 mm	136 kN	45,3 kN	37,5 kN	121%
RKS-SA-10,0-39	20 mm	80 mm	32000 mm³	90 mm	181 kN	60,4 kN	50,0 kN	121%
RKS-SA-12,5-50	20 mm	90 mm	40500 mm ³	90 mm	230 kN	76,5 kN	62,5 kN	122%
RKS-SA-17,0-50	25 mm	90 mm	50625 mm³	90 mm	287 kN	95,6 kN	85,0 kN	113%
RKS-SA-22,0-50	30 mm	90 mm	60750 mm³	90 mm	344 kN	114,8 kN	110,0 kN	104%

Tabelle 13: Querzug-Stahltragfähigkeiten der Aufstellanker Typ SE

Anker	Blechdicke	Restquer- schnitt Kerbe	Widerstands- moment Kerbe	Hebelarm	Ankertra	gfähigkeit	Nennlast	Sicherheit
	t	b _{SE} – q	W_{pl}	$x_1 = r_{SE}$	r _{SE} V _{Rk,A} V _{zul,A}		Q_N	$\eta_{\scriptscriptstyle A,V}$
RKS-SE-1,4-20	8 mm	35 mm	2450 mm³	42 mm	30 kN	9,9 kN	7,0 kN	142%
RKS-SE-2,5-23	12 mm	35 mm	3675 mm³	43 mm	44 kN	14,7 kN	12,5 kN	118%
RKS-SE-4,0-27	15 mm	48 mm	8461 mm³	51 mm	85 kN	28,5 kN	20,0 kN	142%
RKS-SE-5,0-29	18 mm	48 mm	9871 mm³	51 mm	100 kN	33,2 kN	25,0 kN	133%
RKS-SE-7,5-32	15 mm	80 mm	24000 mm³	78 mm	157 kN	52,3 kN	37,5 kN	139%
RKS-SE-10,0-39	20 mm	80 mm	32000 mm³	78 mm	209 kN	69,7 kN	50,0 kN	139%
RKS-SE-12,5-50	20 mm	90 mm	40500 mm³	89 mm	233 kN	77,8 kN	62,5 kN	124%
RKS-SE-17,0-50	25 mm	90 mm	50625 mm³	89 mm	292 kN	97,2 kN	85,0 kN	114%
RKS-SE-22,0-50	30 mm	90 mm	60750 mm³	89 mm	350 kN	116,7 kN	110,0 kN	106%

8.2 LOKALE LASTEINLEITUNG

Für die Bemessung der Aufstellanker in der Verwendung ohne Zugverankerungsbewehrung sind Nachweise zur lokalen Lasteinleitung in den Aufstellanker erforderlich.

Die lokale Lasteinleitung der Ankernormalkräfte erfolgt über den Formschluss der abgespreizten Ankerenden der Aufstellanker mit dem umgebenden Beton (Bild 13).

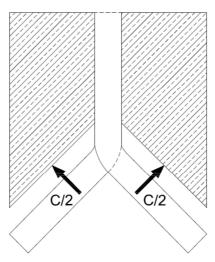


Bild 13: Modell der äußeren Tragfähigkeit der lokalen Lasteinleitung

Die Tragfähigkeit der lokalen Lasteinleitung der Aufstellanker resultiert aus den Vertikalanteilen der Pressungskräfte C einer erhöhten lokalen Betonpressung f_{cpk} auf den abgespreizten Ankerschenkeln. Die charakteristische Tragfähigkeit $N_{Rk,LE}$ der lokalen Lasteinleitung der Aufstellanker infolge Teilflächenpressung beträgt:

$$N_{Rk,LE} = \sin \alpha \cdot b \cdot c \cdot f_{cpk}$$
 mit $f_{cpk} = 7 f_{ck} = 84 \text{ N/mm}^2$ (62)
 $\alpha = 90^{\circ}$

Die maßgebenden Tragfähigkeiten ergeben sich für den einseitigen Aufstellanker Typ SE mit $b=b_{\text{SE}}$.

Die zulässige Ankerkraft $N_{\text{zul,LE}}$ und das Sicherheitsniveau η_{LE} betragen:

$$N_{\text{zulle}} = N_{\text{Bkle}} / \gamma_{\text{C}}$$
 mit $\gamma_{\text{C}} = 2.5$ (63)

$$\eta_{LE} = N_{zul,LE} / N_N \ge 100\% \tag{64}$$

Die Formeln werden für den Spreizwinkel $2\alpha=90^{\circ}$ und Beton C12/15 ausgewertet und die Ergebnisse in Tabelle 14 zusammengestellt.

Tabelle 14: Tragfähigkeiten der Aufstellanker SA/SE der lokalen Lasteinleitung

Anker	Ankerbreite	Schenkel- länge	Ankertra	gfähigkeit	Nennlast	Sicherheit
	b _{SE}	С	N _{Rk,LE}	N _{zul,LE}	N _N	$\eta_{\scriptscriptstyle LE}$
RKS-SA/E-1,4-20	45 mm	42,4 mm	113 kN	45,4 kN	14,0 kN	324%
RKS-SA/E-2,5-23	45 mm	49,5 mm	132 kN	52,9 kN	25,0 kN	212%
RKS-SA/E-4,0-27	60 mm	56,6 mm	202 kN	80,6 kN	40,0 kN	202%
RKS-SA/E-5,0-29	60 mm	56,6 mm	202 kN	80,6 kN	50,0 kN	161%
RKS-SA/E-7,5-32	100 mm	77,8 mm	462 kN	184,8 kN	75,0 kN	246%
RKS-SA/E-10,0-39	100 mm	77,8 mm	462 kN	184,8 kN	100,0 kN	185%
RKS-SA/E-12,5-50	120 mm	99,0 mm	706 kN	282,2 kN	125,0 kN	226%
RKS-SA/E-17,0-50	120 mm	99,0 mm	706 kN	282,2 kN	170,0 kN	166%
RKS-SA/E-22,0-50	120 mm	99,0 mm	706 kN	282,2 kN	220,0 kN	128%

8.3 BETONAUSBRUCH

8.3.1 Allgemeines

Die Aufstellanker sind in der Verwendung ohne Zugverankerungsbewehrung auf die Tragfähigkeit infolge Widerstand gegen Betonausbruch nachzuweisen. Dabei sind unter Normalkraftbeanspruchungen die Nachweise gegen Betonausbruch auf der Bauteiloberseite und gegen Betonabplatzungen auf den Bauteilseiten zu führen.

Für den Lastfall Aufrichten ist unabhängig von der Verwendung einer Zugverankerungsbewehrung der Nachweis gegen Betonausbruch auf der oberen Bauteilseite unter Querzugbelastungen zu führen.

Die Zwischenabstände a_z und die Randabstände in Längsrichtung a_{RL} gemäß Abs. 4.6 sind so gewählt, dass sich stets der volle Ausbruchkegel in Bauteillängsrichtung einstellen kann.

8.3.2 Betonausbruch auf der Bauteiloberseite

Die Tragfähigkeit gegen Betonausbruch auf der Bauteiloberseite wird in Anlehnung CEN/TC 229 [6] unter Berücksichtigung des Bauteilquerrandabstands a_{RQ} berechnet.

Die Tragfähigkeit gegen Betonausbruch auf der Bauteiloberseite N_{Rk,C,O} beträgt:

$$N_{Rk,C,O} = 8.0 \cdot h_{ef}^{1.7} \cdot \psi_{Q} \cdot \sqrt{f_{ck}}$$
 (65)

mit
$$\psi_Q = 0.16 + a_{RQ} / (1.75 h_{ef}) \le 1.0$$
 (66)

Die effektive Verankerungstiefe h_{ef} beträgt:

$$h_{ef} = I + k \tag{67}$$

Die maßgebenden Tragfähigkeiten ergeben sich für die einseitigen Aufstellanker SE, da für diese geringere Querrandabstände a_{RQ} zulässig sind.

Die zulässige Normalkraft N_{zul.C.O} beträgt:

$$N_{zul,C} = N_{Rk,C,O} / \gamma_C \le N_N$$
 mit $\gamma_C = 2.5$ (68)

In Tabelle 15 sind die Ankertraglasten infolge Widerstand gegen Betonausbruch für alle Ankergrößen beider Ankertypen SA/SE zusammengestellt.

Tabelle 15: Betonausbruchtragfähigkeit der Aufstellanker Typ SA/SE ohne Zugverankerungsbewehrung

	An	ker	Querran	deinfluss				
Anker	Länge	eff. Verank Tiefe	Querrand- abstand	Beiwert	Ankertra	gfähigkeit	Nennlast	Sicherheit
	-	h _{ef}	a _{RQ}	Ψ_{Q}	N _{Rk,C,O} N _{zul,C,O}		N _N	η _{сο}
RKS-SA/E-1,4-20	200 mm	210 mm	45 mm	0,28	69,4 kN	27,8 kN	14 kN	198%
RKS-SA/E-2,5-23	230 mm	240 mm	60 mm	0,30	93,4 kN	37,4 kN	25 kN	149%
RKS-SA/E-4,0-27	270 mm	280 mm	75 mm	0,31	125,5 kN	50,2 kN	40 kN	125%
RKS-SA/E-5,0-29	290 mm	300 mm	95 mm	0,34	153,6 kN	61,5 kN	50 kN	123%
RKS-SA/E-7,5-32	320 mm	335 mm	125 mm	0,37	202,9 kN	81,1 kN	75 kN	108%
RKS-SA/E-10,0-39	390 mm	405 mm	140 mm	0,36	268,3 kN	107,3 kN	100 kN	107%
RKS-SA/E-12,5-50	500 mm	515 mm	150 mm	0,33	368,6 kN	147,4 kN	125 kN	118%
RKS-SA/E-17,0-50	500 mm	515 mm	200 mm	0,38	431,2 kN	172,5 kN	170 kN	101%
RKS-SA/E-22,0-50	500 mm	515 mm	300 mm	0,49	556,5 kN	222,6 kN	220 kN	101%

8.3.3 Betonabplatzungen an den Bauteilseiten

Der Widerstand der Aufstellanker gegen laterale Betonabplatzungen auf den Bauteilseitenflächen (sideface blowout, lateraler Betonausbruch) N_{Rk,C,L} wird in Anlehnung an CEN/TC 229 [6] und DIN SPEC 1021-4-2 [8], Abs. 6.2.7 berechnet:

$$N_{Rk,C,L} = 8 a_{RQ} \cdot \sqrt{A_h} \cdot \sqrt{f_{ck,cube}} \qquad \text{mit } \psi_Q \le 1,0$$
 (69)

Dabei wird als Ankerkopffläche A_h die projizierte Fläche der gespreizten Ankerenden angesetzt:

$$A_{b} = b \cdot z / 2 \tag{70}$$

Dabei ergeben sich für die einseitigen Aufstellanker Typ SE mit $b=b_{SE}$ und mit den geringeren Werten für a_{RQ} die maßgebenden Tragfähigkeiten.

Die zulässige Normalkraft $N_{zul,C,L}$ und das Sicherheitsniveau η_{CL} betragen:

$$N_{\text{zul,C.L}} = N_{\text{Bk,C.L}} / \gamma_{\text{C}}$$
 mit $\gamma_{\text{C}} = 2.5$ (71)

$$\eta_{\text{CL}} = N_{\text{zul,C,L}} / N_{\text{N}} \ge 100\% \tag{72}$$

In Tabelle 16 sind die Tragfähigkeiten gegen lateralen Betonausbruch für alle Ankergrößen angegeben.

Tabelle 16: Tragfähigkeit auf seitlichen Betonausbruch Ankertyp SA/SE ohne Zugverankerungsbewehrung

Deweillung								
	An	ker	Querrand-	Ankartra	gfähigkeit	Nennlast	Sicherheit	
Anker	Breite	Spreizung	abstand	Allkertia	Biailigheit	Neilliast	Sichemen	
	b _{SE}	Z	a _{RQ}	N _{Rk,C,S}	N _{zul,C,S}	N _N	η _{cs}	
RKS-SA/E-1,4-20	45 mm	60 mm	45 mm	51,5 kN	20,6 kN	14 kN	147%	
RKS-SA/E-2,5-23	45 mm	70 mm	60 mm	74,2 kN	29,7 kN	25 kN	119%	
RKS-SA/E-4,0-27	60 mm	80 mm	75 mm	114,6 kN	45,8 kN	40 kN	115%	
RKS-SA/E-5,0-29	60 mm	80 mm	95 mm	145,1 kN	58,0 kN	50 kN	116%	
RKS-SA/E-7,5-32	100 mm	110 mm	125 mm	289,0 kN	115,6 kN	75 kN	154%	
RKS-SA/E-10,0-39	100 mm	110 mm	140 mm	323,7 kN	129,5 kN	100 kN	129%	
RKS-SA/E-12,5-50	120 mm	140 mm	150 mm	428,6 kN	171,4 kN	125 kN	137%	
RKS-SA/E-17,0-50	120 mm	140 mm	200 mm	571,5 kN	228,6 kN	170 kN	134%	
RKS-SA/E-22,0-50	120 mm	140 mm	300 mm	857,2 kN	342,9 kN	220 kN	156%	

8.3.4 Betonausbruch unter Querzuglasten

Der Widerstand der Aufstellanker gegen Betonausbruch auf den Bauteilseitenflächen unter Querzuglasten (transversaler Betonausbruch, Betonkantenbruch) V_{Rk,C,T} wird in Anlehnung an DIN SPEC 1021-4-2 [8], Abs. 6.3.5 berechnet:

$$V_{Rk,C,T} = 3,75 d_{eq}^{\alpha} \cdot h_{ef}^{\beta} \cdot c_1^{1,5} \cdot k_a \cdot \sqrt{f_{ck,cube}}$$
(73)

mit:
$$\alpha = 0.1 (h_{ef} / c_1)^{0.5}$$
 (74)

$$\beta = 0.1 \, \left(d_{\text{equ}} / \, c_1 \right)^{0.2} \tag{75}$$

Der Faktor 3,75 wurde in den Ausziehversuchen kalibriert (Abs. 9). Als Ankerschaftdurchmesser wird der äquivalente Durchmesser d_{equ} definiert, der wie folgt berechnet wird:

$$d_{\text{equ}} = \sqrt{(b \cdot t)} \tag{76}$$

Infolge der um 45° geneigten, um den Anker geführten Aufrichtbewehrung kann als effektiver Randabstand c₁ des Ankers der unteren Knickpunkt der Bewehrung angesetzt werden. Bei einem angenommenen Randabstand der Bewehrung von u=30 mm gilt:

$$c_1 = 2 a_{PO} - 30 \text{ mm}$$
 (77)

Die Ausführung mit der abgewinkelten Aufrichtbewehrung entspricht einer Doppelverankerung mit einer gegenüber einer Einzelverankerung vergrößerten ideellen Betonausbruchfläche $A_{c,v}$:

$$A_{c,V}^{0} = 4.5 a_{BO}^{2}$$
 für Einzelverankerung (78)

$$A_{c,V} = 1.5 a_{RO} \cdot (3 a_{RO} + s)$$
 für Doppelverankerung (79)

Der Quotient beider Flächen liefert den Flächenfaktor ka:

$$k_a = A_{c,V} / A_{c,V}^0 = (3 a_{RQ} + s) / (3 a_{RQ}) = 1 + s / (3 a_{RQ})$$
 (80)

Die Spreizung s entspricht der vergrößerten Grundlänge der Ausbruchfläche in Bauteillängsrichtung, die aus dem Abstand der Knickpunkte der Aufrichtbewehrung bestimmt wird:

$$s = 2 (a_{RQ} + b/2 - 30 \text{ mm}) = a_{RQ} + b - 60 \text{ mm}$$
 (81)

Dabei ergeben sich für die einseitigen Aufstellanker Typ SE mit Zugverankerungsbewehrung mit $b=b_{SE}$ und mit den geringeren Werten für a_{RQ} die maßgebenden Tragfähigkeiten.

Tabelle 17: Querzugtragfähigkeit auf transversalen Betonausbruch

		Anker		eff. Verank.	Querrand-	effekt. Rand-	Enroizuna
Anker	Dicke	Breite	äquival. Ø	Tiefe	abstand	abstand	Spreizung
	t	b _{SE}	d _{equ}	h _{ef}	a _{QR,SE}	c ₁	S
RKS-SA/E-1,4-20	6 mm	45 mm	16 mm	210 mm	45 mm	60 mm	75 mm
RKS-SA/E-2,5-23	12 mm	45 mm	23 mm	240 mm	60 mm	90 mm	105 mm
RKS-SA/E-4,0-27	15 mm	60 mm	30 mm	280 mm	70 mm	110 mm	140 mm
RKS-SA/E-5,0-29	18 mm	60 mm	32 mm	300 mm	70 mm	110 mm	140 mm
RKS-SA/E-7,5-32	15 mm	100 mm	39 mm	335 mm	80 mm	130 mm	200 mm
RKS-SA/E-10,0-39	20 mm	100 mm	45 mm	405 mm	100 mm	170 mm	240 mm
RKS-SA/E-12,5-50	20 mm	120 mm	49 mm	515 mm	120 mm	210 mm	300 mm
RKS-SA/E-17,0-50	25 mm	120 mm	55 mm	515 mm	150 mm	270 mm	360 mm
RKS-SA/E-22,0-50	30 mm	120 mm	60 mm	515 mm	180 mm	330 mm	420 mm

Anker	Flächen- faktor	Beiwerte		Ankertra	gfähigkeit	Nennlast	Sicherheit
	k _a	α	β	V _{Rk,C,T}	V _{zul,C,T}	Q_N	η _{ст}
RKS-SA/E-1,4-20	1,56	0,19	0,08	26,8 kN	10,7 kN	7,0 kN	153%
RKS-SA/E-2,5-23	1,58	0,16	0,08	49,9 kN	19,9 kN	12,5 kN	160%
RKS-SA/E-4,0-27	1,67	0,16	0,08	74,2 kN	29,7 kN	20,0 kN	148%
RKS-SA/E-5,0-29	1,67	0,17	0,08	77,5 kN	31,0 kN	25,0 kN	124%
RKS-SA/E-7,5-32	1,83	0,16	0,08	112,0 kN	44,8 kN	37,5 kN	120%
RKS-SA/E-10,0-39	1,80	0,15	0,08	165,0 kN	66,0 kN	50,0 kN	132%
RKS-SA/E-12,5-50	1,83	0,16	0,07	237,7 kN	95,1 kN	62,5 kN	152%
RKS-SA/E-17,0-50	1,80	0,14	0,07	317,4 kN	127,0 kN	85,0 kN	149%
RKS-SA/E-22,0-50	1,78	0,12	0,07	402,4 kN	161,0 kN	110,0 kN	146%

Die zulässige Querkraft $V_{\text{zul},C,T}$ und das Sicherheitsniveau η_{CT} betragen:

$$V_{zul,C,T} = V_{k,C,T} / \gamma_C \qquad \qquad mit \ \gamma_C = 2.5 \eqno(82)$$

$$\eta_{CT} = V_{zul,C,T} / Q_N \ge 100\%$$
(83)

In Tabelle 17 sind die Tragfähigkeiten gegen transversalen Betonausbruch in Abhängigkeit für alle Ankergrößen angegeben.

8.4 ZUGVERANKERUNGSBEWEHRUNG

Die Aufstellanker können optionale über die Zugverankerungsbewehrung $A_{S,Z}$ in Form einer Stabstahlschlaufe im Beton verankert werden. Bei dieser Ausführungsvariante ist der Einbau in dünneren Betonschalen möglich (Abs. 4.6). Die Schlaufe ist maximal um den Winkel von $2\alpha=30^{\circ}$ gespreizt (s. Bild 4).

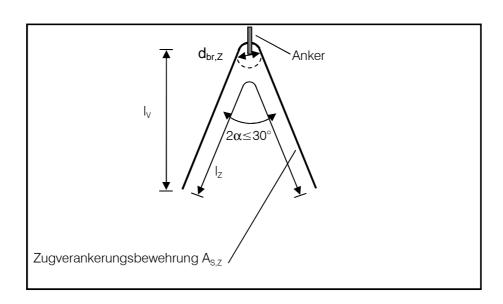


Bild 14: Zugverankerungsbewehrung

Der Biegerollendurchmesser $d_{br,Z}$ wird dabei nach DIN EN 1992-1-1 [2], Tab. 81DE mit dem Wert für D_{min} für Stäbe $d_{s,Z}{=}$ < 20 mm bestimmt:

$$d_{br,Z} \ge D_{min} = 4 d_{S,Z}$$
 (84)

Die Stahltragfähigkeit in Ankernormalenrichtung der Zugverankerungsbewehrung $N_{\text{Rk,Z,s}}$ wird auf der sicheren Seite liegend mit dem maximalen Spreizungswinkel $2\alpha = 30^{\circ}$ berechnet und beträgt:

$$N_{\text{Rk},Z,s} = 2\cos\alpha \cdot A_{\text{S},Z} \cdot f_{\text{sk}} = 2\cdot\cos15^{\circ} \cdot \pi \cdot d_{\text{S},Z}^{2} / 4 \cdot f_{\text{sk}} \tag{85}$$

Die zulässige Normalkraft $N_{zul,Z,s}$ und das Sicherheitsniveau $\eta_{Z,s}$ betragen:

$$N_{zul,Z,s} = N_{Rk,Z,s} / \gamma_S$$
 mit $\gamma_S = 2.5$ (86)

$$\eta_{7s} = N_{7117s} / N_N \ge 100\%$$
 (87)

In Tabelle 18 ist die Stahltragfähigkeit der Zugverankerungsbewehrung angegeben.

	Zugveranke	erungsbew.				
Anker	Durchmesser	Querschnitt	Ankertra	gfähigkeit	Nennlast	Sicherheit
	d _{s,z}	A _{s,z}	N _{Rk,Z,s} N _{zul,Z,s}		N _N	η_{z_s}
RKS-SA/E-1,4-20	10 mm	79 mm²	75,9 kN	30,3 kN	14,0 kN	217%
RKS-SA/E-2,5-23	12 mm	113 mm²	109,2 kN	43,7 kN	25,0 kN	175%
RKS-SA/E-4,0-27	16 mm	201 mm²	194,2 kN	77,7 kN	40,0 kN	194%
RKS-SA/E-5,0-29	16 mm	201 mm²	194,2 kN	77,7 kN	50,0 kN	155%
RKS-SA/E-7,5-32	20 mm	314 mm²	303,5 kN	121,4 kN	75,0 kN	162%
RKS-SA/E-10,0-39	20 mm	314 mm²	303,5 kN	121,4 kN	100,0 kN	121%
RKS-SA/E-12,5-50	25 mm	491 mm²	474,1 kN	189,7 kN	125,0 kN	152%
RKS-SA/E-17,0-50	28 mm	616 mm²	594,8 kN	237,9 kN	170,0 kN	140%
RKS-SA/E-22,0-50	28 mm	616 mm²	594,8 kN	237,9 kN	220,0 kN	108%

Tabelle 18: Ankertraglasten infolge Stahltragfähigkeit der Zugverankerungsbewehrung

Die Verbundtragfähigkeit in Ankernormalenrichtung der Zugverankerungsbewehrung N_{Rk,Z,b} beträgt für Beton C12/15:

$$N_{Rk,Z,b} = 2 I_{V} \cdot \pi \cdot d_{S,Z} \cdot f_{bk,15}$$
(88)

Die projizierte Schenkellänge I_V ohne Krümmungsbereich beträgt in Abhängigkeit von der Stabspreizung 2α , der Gesamtlänge der Verankerungsbewehrung I_Z und vom Biegerollendurchmesser D_{min} (vgl. Bild 14):

$$I_{V} = 0.5 \cos \alpha \cdot (I_{Z} - \pi / 2 \cdot D_{min}) \qquad \text{mit } \alpha = 15^{\circ}$$

$$D_{min} = 4 d_{SZ}$$
(89)

$$I_V = 0.5 \cos 15^{\circ} \cdot (I_Z - 2 \pi \cdot d_{S,Z})$$
 (90)

Die Verankerungslänge I_v kann nach DIN EN 1992-1-1 [2] mit dem Faktor α_a =0,7 bei der Ausführung der Bewehrungsstäbe mit Winkelhaken abgemindert werden. Ebenso kann eine Abminderung der Verankerungslänge I_v im Verhältnis der Verbundspannungen f_{bk} bei der Verwendung höherfester Betone erfolgen.

Die zulässige Normalkraft $N_{\text{zul},Z,b}$ und das Sicherheitsniveau $\eta_{Z,b}$ betragen:

$$N_{zul,Z,b} = N_{Rk,Z,b} / \gamma_C \qquad \text{mit } \gamma_C = 2,5$$
 (91)

$$\eta_{Z,b} = N_{zul,Z,b} / N_N \ge 100\%$$
(92)

Die Ankertraglast infolge Verbundtragfähigkeit der Zugverankerungsbewehrung ist in Tabelle 19 angegeben.

Tabelle 19: Ankertraglast infolge Verbundtragfähigkeit der Zugverankerungsbewehrung (C12/15)

	Zugver	ankerungsbew	ehrung				
Anker	Durchmesser	Gesamtlänge	Verankergs- länge	Ankertra	Ankertragfähigkeit		Sicherheit
	d _{s,z}	Iz	I _v	N _{Rk,Z,b}	N _{zul,Z,b}	N _N	η_{zb}
RKS-SA/E-1,4-20	10 mm	650 mm	284 mm	44,9 kN	18,0 kN	14,0 kN	128%
RKS-SA/E-2,5-23	12 mm	1000 mm	447 mm	84,8 kN	33,9 kN	25,0 kN	136%
RKS-SA/E-4,0-27	16 mm	1200 mm	531 mm	134,5 kN	53,8 kN	40,0 kN	135%
RKS-SA/E-5,0-29	16 mm	1500 mm	676 mm	171,2 kN	68,5 kN	50,0 kN	137%
RKS-SA/E-7,5-32	20 mm	1750 mm	784 mm	248,4 kN	99,4 kN	75,0 kN	132%
RKS-SA/E-10,0-39	20 mm	1900 mm	857 mm	271,4 kN	108,5 kN	100,0 kN	109%
RKS-SA/E-12,5-50	25 mm	2200 mm	987 mm	390,6 kN	156,2 kN	125,0 kN	125%
RKS-SA/E-17,0-50	28 mm	2500 mm	1122 mm	497,6 kN	199,0 kN	170,0 kN	117%
RKS-SA/E-22,0-50	28 mm	3000 mm	1364 mm	604,7 kN	241,9 kN	220,0 kN	110%

8.5 GRUND- UND STECKBÜGELBEWEHRUNG

8.5.1 Allgemeines

Die Bemessung der Grund- und Steckbügelbewehrung erfolgt separat für die Lastfälle zentrischer Zug Z und Schrägzug S:

Für den Lastfall zentrischer Zug Z wird die Grund- und Steckbügelbewehrung auf die Ankernennlast N_N bemessen. Zusätzlich wird ein Nachweis der Steckbügel als Spaltzugbewehrung der horizontalen Lastkomponente H geführt.

Für den Lastfall Schrägzug S wird jeweils die einseitige Steckbügelbewehrung (linksoder rechtsseitig des Ankers) auf die volle Schrägzugnennlast S_N bemessen.

8.5.2 Lastfall Zentrischer Zug

Die aus den Ankerschenkeln bzw. der Zugverankerungsbewehrung in den Betonkörper eingeleitete und nach oben in das Bauteil ausstrahlende Ankerkraft wird durch die Grund- und Steckbügelbewehrung nach unten zurückgehängt. Die Verankerung der Grund- und Steckbügelbewehrung im Beton erfolgt unterhalb des rechnerischen Betonausbruchkegels (s. Abs. 8.3), um eine vollständige Lastaufnahme zu gewährleisten.

Die Steckbügelbewehrung wird mit vollem Querschnitt angesetzt. Der Querschnitt der Grundbewehrung wird auf der effektiven Breite der doppelten Ankerlänge $b_{G,ef}$ =21 in Ansatz gebracht.

Die Stahltragfähigkeit $N_{Rk,G}$ der effektiven Grundbewehrung $A_{S,G}$ in Ankernormalenrichtung beträgt:

$$N_{Rk,G} = A_{S,G} \cdot f_{sk} = 4 \cdot a_{S,G} \cdot f_{sk}$$

$$(93)$$

Die Stahltragfähigkeit der n_B Stück Steckbügelbewehrung $N_{Rk,B,s}$ in Ankernormalenrichtung beträgt:

$$N_{Rk,B,s} = A_{S,B} \cdot f_{sk} = 2 n_B d_{S,B}^2 / 4 \cdot \pi \cdot f_{sk}$$
 (94)

Die zulässige Normalkraft $N_{\text{zul,GB,s}}$ und das Sicherheitsniveau $\eta_{\text{GB,s}}$ betragen:

$$N_{zul,GB,s} = (N_{Rk,G} + N_{Rk,B,s}) / \gamma_s \qquad \text{mit } \gamma_s = 2,5$$
 (95)

$$\eta_{GBs} = N_{zulGBs} / N_N \ge 100\% \tag{96}$$

Die Stahltragfähigkeiten der Grund- und Steckbügelbewehrung im Lastfall zentrischer Zug sind in Tabelle 20 für alle Ankergrößen zusammengestellt.

Tabelle 20: Ankertraglasten infolge Stahltragfähigkeit der Grund- und Steckbügelbewehrung LF Z. Zug

	Ankerlänge	effektive Breite	Grundbe	wehrung		Steckbügel	
Anker	Alikerialige	Grundbew.	Flächenqu.	Querschnitt	Anzahl	Ø	Querschnitt
	1	b _{G,ef}	a _{s,G}	$A_{S,G}$	n	d _{S,B}	A _{S,B}
RKS-SA/E-1,4-20	200 mm	400 mm	188 mm²/m	150 mm²	2	6 mm	113 mm²
RKS-SA/E-2,5-23	230 mm	460 mm	188 mm²/m	173 mm²	2	8 mm	201 mm²
RKS-SA/E-4,0-27	270 mm	540 mm	188 mm²/m	203 mm²	2	8 mm	201 mm²
RKS-SA/E-5,0-29	290 mm	580 mm	188 mm²/m	218 mm²	2	10 mm	314 mm²
RKS-SA/E-7,5-32	320 mm	640 mm	188 mm²/m	241 mm²	4	10 mm	628 mm²
RKS-SA/E-10,0-39	390 mm	780 mm	188 mm²/m	293 mm²	6	10 mm	942 mm²
RKS-SA/E-12,5-50	500 mm	1000 mm	257 mm²/m	514 mm²	6	10 mm	942 mm²
RKS-SA/E-17,0-50	500 mm	1000 mm	335 mm²/m	670 mm²	6	12 mm	1357 mm²
RKS-SA/E-22,0-50	500 mm	1000 mm	424 mm²/m	848 mm²	6	12 mm	1357 mm²

Anker	Ankertra	gfähigkeit	Nennlast	Sicherheit
	N _{Rk,GB,s} N _{zul,GB,s}		N _N	$\eta_{\scriptscriptstyle{GB},s}$
RKS-SA/E-1,4-20	132 kN	53 kN	14 kN	376%
RKS-SA/E-2,5-23	187 kN	75 kN	25 kN	299%
RKS-SA/E-4,0-27	202 kN	81 kN	40 kN	202%
RKS-SA/E-5,0-29	266 kN	106 kN	50 kN	213%
RKS-SA/E-7,5-32	434 kN	174 kN	75 kN	232%
RKS-SA/E-10,0-39	618 kN	247 kN	100 kN	247%
RKS-SA/E-12,5-50	728 kN	291 kN	125 kN	233%
RKS-SA/E-17,0-50	1014 kN	405 kN	170 kN	238%
RKS-SA/E-22,0-50	1103 kN	441 kN	220 kN	200%

Die Verbundtragfähigkeit im Lastfall zentrischer Zug der Grund- und Steckbügelbewehrung setzt sich aus den Anteilen der Grundbewehrung und der Steckbügelbewehrung zusammen. Die Grundbewehrung aus Bewehrungsmatten Q188 wird als stets voll verankert angesetzt. Damit entspricht die Verbundtragfähigkeit der Stahltragfähigkeit der Grundbewehrung.

Die Verbundtragfähigkeit der Steckbügelbewehrung beträgt für Beton C12/15:

$$N_{BkBb} = 2 n_B \cdot I_{Bb} \cdot \pi \cdot d_{SB} \cdot f_{bk15} \qquad \text{mit } I_{Bb} = I_B - h_{ef} \qquad (97)$$

 n_B ist dabei die Gesamtanzahl der Steckbügel. Die Verankerungslänge $I_{B,b}$ ist die Differenz aus Schenkellänge I_B und rechnerischer Ausbruchkegeltiefe h_{ef} :

$$I_{B,b} = I_B - h_{ef} \tag{98}$$

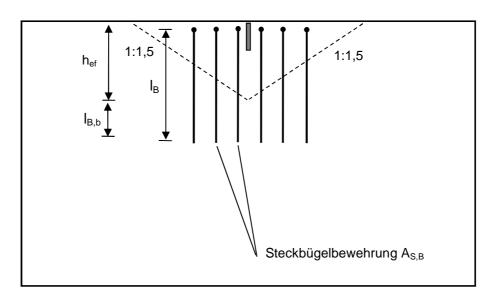


Bild 15: Verankerung der Steckbügelbewehrung unterhalb des Betonausbruchkegels

Die Gesamtverbundtragfähigkeit $N_{\text{Rk},\text{GB}}$ wird wie folgt berechnet:

$$N_{Rk,GB,b} = N_{Rk,G} + N_{Rk,B,b} \tag{99}$$

Die zulässige Normalkraft $N_{\text{zul},GB,b}$ und das Sicherheitsniveau $\eta_{\text{GB},b}$ betragen:

$$N_{zul,GB,b} = N_{Rk,GB,b} / \gamma_C$$
 mit $\gamma_C = 2.5$ (100)

$$\eta_{GB,b} = N_{zul,GB,b} / N_N \ge 100\%$$
(101)

Die Verbundtragfähigkeiten für Beton C12/15 der Grund- und Steckbügelbewehrung im Lastfall zentrischer Zug sind in Tabelle 21 für alle Ankergrößen zusammengestellt

Tabelle 21: Ankertraglasten inf. Verbundtragfähigkeit der Grund- und Steckbügelbewehrung LF Zug

			Steck	bügel	
Anker	Anzahl	Ø	Schenkellä.	Ankerlänge	Verbundlä.
	n	d _{s,B}	I _B	I	I _{B,b}
RKS-SA/E-1,4-20	2	6 mm	500 mm	200 mm	300 mm
RKS-SA/E-2,5-23	2	8 mm	600 mm	230 mm	370 mm
RKS-SA/E-4,0-27	2	8 mm	700 mm	270 mm	430 mm
RKS-SA/E-5,0-29	2	10 mm	800 mm	290 mm	510 mm
RKS-SA/E-7,5-32	4	10 mm	800 mm	320 mm	480 mm
RKS-SA/E-10,0-39	6	10 mm	800 mm	390 mm	410 mm
RKS-SA/E-12,5-50	6	10 mm	800 mm	500 mm	300 mm
RKS-SA/E-17,0-50	6	12 mm	1000 mm	500 mm	500 mm
RKS-SA/E-22,0-50	6	12 mm	1200 mm	500 mm	700 mm

Anker	Ankertra	gfähigkeit	Nennlast	Sicherheit
	N _{Rk,GB,b}	N _{zul,GB,b}	N _N	$\eta_{\scriptscriptstyle{GB,b}}$
RKS-SA/E-1,4-20	104 kN	41 kN	14 kN	741%
RKS-SA/E-2,5-23	133 kN	53 kN	25 kN	533%
RKS-SA/E-4,0-27	156 kN	62 kN	40 kN	390%
RKS-SA/E-5,0-29	190 kN	76 kN	50 kN	380%
RKS-SA/E-7,5-32	272 kN	109 kN	75 kN	363%
RKS-SA/E-10,0-39	341 kN	137 kN	100 kN	341%
RKS-SA/E-12,5-50	400 kN	160 kN	125 kN	320%
RKS-SA/E-17,0-50	620 kN	248 kN	170 kN	365%
RKS-SA/E-22,0-50	823 kN	329 kN	220 kN	374%

8.5.3 Spaltzugtragfähigkeit LF Zentrischer Zug

Die Horizontalkomponente H der Ankerlast wird beim Lastfall Zentrischer Zug nicht durch eine Schrägzugbewehrung aufgenommen, sondern durch Betonpressung über den Ankeraussparungskörper abgetragen. Durch die konzentrierte Lasteinleitung treten neben dem Aussparungskörper Spaltzugkräfte $Z_{\rm Sp}$ auf, die von dem einseitigen Querschnitt der Steckbügelbewehrung aufgenommen werden müssen.

Nach DAfStb-Heft 240 beträgt die Spaltzugkraft Z_{Sp} höchstens 25% der einwirkenden Horizontalkomponente H der zentrischen Zuglast:

$$Z_{So} \le 0.25 \text{ H}$$
 (102)

Die Tragfähigkeit $H_{Rk,B,Sp}$ der vorhandenen Spaltzugbewehrung , des Kappenquerschnitts der einseitigen Steckbügel wird damit wie folgt bestimmt:

$$H_{Rk,B,Sp} = 4 A_{S,B} / 4 \cdot f_{sk} = 0.5 n_B \cdot d_{S,B}^2 \cdot \pi \cdot f_{sk}$$
 (103)

Die einwirkende Last besteht aus der H-Komponente der zentrischen Zuglast. Sie beträgt auf Grund der Neigungswinkelbegrenzung von $\beta \leq 30^{\circ}$ maximal 0,5 Z (vgl. Abs. 7.1). Die Spaltzugtragfähigkeit $N_{Rk,B,Sp}$ der Bewehrung aus $n_B/2$ Steckbügeln in Ankernormalrichtung berechnet sich zu:

$$N_{Rk,B,Sp} = H_{Rk,B,Sp} / 0.5 = n_B \cdot d_{S,B}^2 \cdot \pi \cdot f_{sk}$$
 (104)

Tabelle 22: Ankertraglasten infolge Spaltzugfähigkeit der einseitigen Steckbügelbewehrung

		Steckbügel		Amkoutus	afähialait	Nennlast	Ciah auh ait
Anker	Anzahl	ø	Querschnitt	Ankertra	gfähigkeit	Nenniast	Sicherheit
	n	d _{S,B}	A _{S,B}	H _{Rk,B,Sp}	N _{zul,GB,s}	N _N	$\eta_{\scriptscriptstyle{GB,s}}$
RKS-SA/E-1,4-20	2	6 mm	28 mm²	57 kN	45 kN	14 kN	323%
RKS-SA/E-2,5-23	2	8 mm	50 mm²	101 kN	80 kN	25 kN	322%
RKS-SA/E-4,0-27	2	8 mm	50 mm²	101 kN	80 kN	40 kN	201%
RKS-SA/E-5,0-29	2	10 mm	79 mm²	157 kN	126 kN	50 kN	251%
RKS-SA/E-7,5-32	4	10 mm	157 mm²	314 kN	251 kN	75 kN	335%
RKS-SA/E-10,0-39	6	10 mm	236 mm²	471 kN	377 kN	100 kN	377%
RKS-SA/E-12,5-50	6	10 mm	236 mm²	471 kN	377 kN	125 kN	302%
RKS-SA/E-17,0-50	6	12 mm	339 mm²	679 kN	543 kN	170 kN	319%
RKS-SA/E-22,0-50	6	12 mm	339 mm²	679 kN	543 kN	220 kN	247%

Die zulässige Normalkraft $N_{\text{zul},B,Sp}$ und das Sicherheitsniveau $\eta_{\text{B,Sp}}$ betragen:

$$N_{zul,B,Sp} = N_{Rk,B,Sp} / \gamma_S$$
 mit $\gamma_S = 2.5$ (105)

$$\eta_{BSD} = N_{zulBSD} / N_N \ge 100\%$$
 (106)

Die Spaltzugtragfähigkeiten der Steckbügelbewehrung sind in Tabelle 22 für alle Ankergrößen zusammengestellt

8.5.4 Lastfall Schrägzug

Für den Lastfall Schrägzug S ist nach CEN/TC 229 [6], Abs. 8.3.5 die Steckbügelbewehrung auf 100% der horizontalen Lastkomponente von S zu bemessen. Da die Lastneigung β =90° annehmen kann, gilt H_{max}=S. Die Lasteinleitung der Horizontal-komponente H erfolgt über die Schrägzugbewehrungsschlaufe, die links- oder rechtsseitig des Ankers im Beton verankert ist. Die Last wird als schräge Druckstrebe im Betonkörper abgetragen. Zur Aufnahme der zughörigen vertikalen Lastkomponente bei wird die einseitige Steckbügelbewehrung auf die Nennschrägzuglast S_N bemessen.

Die Stahltragfähigkeit $N_{Rk,B,s}$ der $n_B/2$ -Stück einseitigen Steckbügelbewehrung in Ankernormalenrichtung beträgt:

$$N_{Rk,B,s} = 0.5 A_{s,B} \cdot f_{sk} = n_B d_{s,B}^2 / 4 \cdot \pi \cdot f_{sk}$$
 (107)

Die zulässige Schrägzugkraft S_{zulßs} und das Sicherheitsniveau η_{BSs} betragen:

$$S_{\text{zul.B.s}} = N_{\text{Bk.B.s}} / \gamma_{\text{S}}$$
 mit $\gamma_{\text{S}} = 2.5$ (108)

$$\eta_{Bs} = S_{zuBs} / S_N \ge 100\% \tag{109}$$

Die Stahltragfähigkeiten der Grund- und Steckbügelbewehrung im Lastfall Schrägzug sind in Tabelle 23 für alle Ankergrößen zusammengestellt.

Tabelle 23: Ankertraglasten infolge Stahltragfähigkeit der Steckbügelbewehrung auf Schrägzug

	A	effektive	Grundbe	wehrung		Steckbügel	
Anker	Ankerlänge	Breite Grundbew.	Flächenqu.	Querschnitt	Anzahl	Ø	Querschnitt
	1	b _{G,ef}	a _{s,G}	A _{S,G}	n	d _{s,B}	A _{S,B}
RKS-SA/E-1,4-20	200 mm	400 mm	188 mm²/m	75 mm²	4	6 mm	113 mm²
RKS-SA/E-2,5-23	230 mm	460 mm	188 mm²/m	86 mm²	4	8 mm	201 mm²
RKS-SA/E-4,0-27	270 mm	540 mm	188 mm²/m	102 mm²	4	8 mm	201 mm²
RKS-SA/E-5,0-29	290 mm	580 mm	188 mm²/m	109 mm²	4	10 mm	314 mm²
RKS-SA/E-7,5-32	320 mm	640 mm	188 mm²/m	120 mm²	4	10 mm	314 mm²
RKS-SA/E-10,0-39	390 mm	780 mm	188 mm²/m	147 mm²	6	10 mm	471 mm²
RKS-SA/E-12,5-50	500 mm	1000 mm	257 mm²/m	257 mm²	6	10 mm	471 mm²
RKS-SA/E-17,0-50	500 mm	1000 mm	335 mm²/m	335 mm²	8	10 mm	628 mm²
RKS-SA/E-22,0-50	500 mm	1000 mm	424 mm²/m	424 mm²	8	10 mm	628 mm²

Anker	Ankertra	gfähigkeit	Nennlast	Sicherheit
	N _{Rk,GB,s} S _{zul,GB,s}		S _N	$\eta_{\scriptscriptstyle{GB,s}}$
RKS-SA/E-1,4-20	94 kN	38 kN	11,2 kN	336%
RKS-SA/E-2,5-23	144 kN	58 kN	20 kN	288%
RKS-SA/E-4,0-27	151 kN	61 kN	32 kN	189%
RKS-SA/E-5,0-29	212 kN	85 kN	40 kN	212%
RKS-SA/E-7,5-32	217 kN	87 kN	60 kN	145%
RKS-SA/E-10,0-39	309 kN	124 kN	80 kN	154%
RKS-SA/E-12,5-50	364 kN	146 kN	100 kN	146%
RKS-SA/E-17,0-50	482 kN	193 kN	136 kN	142%
RKS-SA/E-22,0-50	526 kN	210 kN	176 kN	120%

Die Verbundtragfähigkeit bei Schrägzugbeanspruchung der einseitigen Steckbügelbewehrung beträgt für Beton C12/15:

$$N_{Rk,B,b} = 0.5 \cdot 2 \, n_B \cdot I_{B,b} \cdot \pi \cdot d_{S,B} \cdot f_{bk,15}$$
 (110)

 n_B ist dabei die Gesamtanzahl der Steckbügel bei Schrägzugbelastung. Die Verankerungslänge $I_{B,b}$ ist die Differenz der Schenkellänge I_B und rechnerischer Ausbruchkegeltiefe h_{ef} :

$$I_{B,b} = I_B - h_{ef} \tag{111}$$

Die zulässige Schrägzugkraft $S_{\text{zul},B,b}$ und das Sicherheitsniveau $\eta_{\text{B},\text{b}}$ betragen:

$$S_{zul,B,b} = N_{Rk,B,b} / \gamma_C$$
 mit $\gamma_C = 2.5$ (112)

$$\eta_{B,b} = S_{zul,B,b} / S_N \ge 100\%$$
(113)

Die Verbundtragfähigkeiten für Beton C12/15 der Grund- und Steckbügelbewehrung im Lastfall zentrischer Zug sind in Tabelle 24 für alle Ankergrößen zusammengestellt

Tabelle 24: Ankertraglasten inf. Verbundtragfähigkeit der Grund- und Steckbügelbew. LF Schrägzug

			Steck	bügel	
Anker	Anzahl	Ø	Schenkellä.	Ankerlänge	Verbundlä.
	n	d _{S,B}	I _B	I	I _{B,b}
RKS-SA/E-1,4-20	4	6 mm	400 mm	200 mm	200 mm
RKS-SA/E-2,5-23	4	8 mm	600 mm	230 mm	370 mm
RKS-SA/E-4,0-27	4	8 mm	800 mm	270 mm	530 mm
RKS-SA/E-5,0-29	4	10 mm	800 mm	290 mm	510 mm
RKS-SA/E-7,5-32	4	10 mm	800 mm	320 mm	480 mm
RKS-SA/E-10,0-39	6	10 mm	1000 mm	390 mm	610 mm
RKS-SA/E-12,5-50	6	10 mm	1000 mm	500 mm	500 mm
RKS-SA/E-17,0-50	8	10 mm	1100 mm	500 mm	600 mm
RKS-SA/E-22,0-50	8	10 mm	1200 mm	500 mm	700 mm

Anker	Ankertra	gfähigkeit	Nennlast	Sicherheit
	N _{Rk,GB,b} S _{zul,GB,b}		S _N	$\eta_{\scriptscriptstyle{GB,b}}$
RKS-SA/E-1,4-20	76 kN	30 kN	11,2 kN	675%
RKS-SA/E-2,5-23	137 kN	55 kN	20 kN	685%
RKS-SA/E-4,0-27	185 kN	74 kN	32 kN	578%
RKS-SA/E-5,0-29	216 kN	86 kN	40 kN	540%
RKS-SA/E-7,5-32	212 kN	85 kN	60 kN	354%
RKS-SA/E-10,0-39	363 kN	145 kN	80 kN	454%
RKS-SA/E-12,5-50	366 kN	146 kN	100 kN	366%
RKS-SA/E-17,0-50	548 kN	219 kN	136 kN	403%
RKS-SA/E-22,0-50	655 kN	262 kN	176 kN	372%

8.6 SCHRÄGZUGBEWEHRUNG

Für Ankerlasten S im LF Schrägzug (Lastneigung $\beta>30^\circ$) ist für den horizontalen Lastanteil H der Schrägzugkraft eine Schrägzugbewehrung $A_{s,s}$ in Form einer Bewehrungsschlaufe einzulegen. Die Schrägzugbewehrung wird auf die volle Schrägzugnennlast S_N bemessen, da sich bei einer Lastneigung von $\beta=90^\circ$ die Horizontalkomponente H zu H=S ergibt. Die Stahltragfähigkeit der Schrägzugbewehrung in Horizontalrichtung $H_{Rk,S,s}$ beträgt:

$$H_{Rk,S,s} = 2 A_{S,S} \cdot f_{sk} = 2 d_{S,S}^2 \cdot \pi / 4 \cdot f_{sk}$$
 (114)

Die zulässige Schrägzugkraft $S_{\text{zul},S,s}$ und das Sicherheitsniveau $\eta_{S,s}$ betragen:

$$S_{zul,S,s} = N_{Rk,S,s} / \gamma_S$$
 mit $\gamma_S = 2.5$ (115)

$$\eta_{S.s.} = S_{zul.S.s.} / S_N \ge 100\%$$
 (116)

Die Stahltragfähigkeiten der Schrägzugbewehrung sind in Tabelle 25 für alle Ankergrößen zusammengestellt.

Tabelle 25: Ankertraglasten infolge Stahltragfähigkeit der Schrägzugbewehrung LF Schrägzug

	Schrägzugb	pewehrung				
Anker	Durchmesser	Querschnitt	Ankertra	gfähigkeit	Nennlast	Sicherheit
	d _{s,s}	A _{s,s}	H _{Rk,S,s}	S _{zul,S,s}	S _N	η_{Ss}
RKS-SA/E-1,4-20	6 mm	28 mm²	28,3 kN	11,3 kN	11,2 kN	101%
RKS-SA/E-2,5-23	8 mm	50 mm²	50,3 kN	20,1 kN	20 kN	101%
RKS-SA/E-4,0-27	12 mm	113 mm²	113,1 kN	45,2 kN	32 kN	141%
RKS-SA/E-5,0-29	12 mm	113 mm²	113,1 kN	45,2 kN	40 kN	113%
RKS-SA/E-7,5-32	14 mm	154 mm²	153,9 kN	61,6 kN	60 kN	103%
RKS-SA/E-10,0-39	16 mm	201 mm²	201,1 kN	80,4 kN	80 kN	101%
RKS-SA/E-12,5-50	20 mm	314 mm²	314,2 kN	125,7 kN	100 kN	126%
RKS-SA/E-17,0-50	25 mm	491 mm²	490,9 kN	196,3 kN	136 kN	144%
RKS-SA/E-22,0-50	25 mm	491 mm²	490,9 kN	196,3 kN	176 kN	112%

Die Verbundtragfähigkeit H_{Rk.S.b} der Schrägzugbewehrung beträgt für Beton C12/15:

$$H_{Rk,S,b} = 2 I_H \cdot \pi \cdot d_{S,S} \cdot f_{bk,15}$$
 (117)

Die freie Schenkellänge I_H außerhalb des Ankeraussparungskörpers beträgt in Abhängigkeit vom Biegerollendurchmesser $d_{br,S}$, der Aussparungskörperbreite b_A des und der Gesamtstablänge I_S :

$$I_{H} = 0.5 I_{S} - \pi/4 \cdot d_{brS} - b_{A}$$
 (118)

Der Biegerollendurchmesser d_{br,S} entspricht der Aussparungskörperdicke d_A.

Die zulässige Schrägzugkraft $S_{\text{zul},S,\text{b}}$ und das Sicherheitsniveau $\eta_{\text{S},\text{b}}$ betragen:

$$S_{zul,S,b} = H_{Rk,S,b} / \gamma_C$$
 mit $\gamma_C = 2.5$ (119)

$$\eta_{S,b} = S_{zul,S,b} / S_N \ge 100\%$$
(120)

Die Verbundtragfähigkeiten für Beton C12/15 der Schrägzugbewehrung sind in Tabelle 26 für alle Ankergrößen zusammengestellt

Tabelle 26: Ankertraglasten inf. Verbundtragfähigkeit der Schrägzugbewehrung LF Schrägzug, C12/15

	Zugver	ankerungsbew	ehrung				
Anker	Durchmesser	Gesamtlänge	Verankergs- länge	Ankertrag	gfähigkeit	Nennlast	Sicherheit
	d _{s,s}	I _S	I _H	H _{Rk,S,b}	S _{zul,S,b}	S _N	$\eta_{\sf zb}$
RKS-SA/E-1,4-20	6 mm	900 mm	310 mm	29,4 kN	11,8 kN	11,2 kN	105%
RKS-SA/E-2,5-23	12 mm	1000 mm	460 mm	87,3 kN	34,9 kN	20 kN	175%
RKS-SA/E-4,0-27	16 mm	1200 mm	431 mm	109,1 kN	43,6 kN	32 kN	136%
RKS-SA/E-5,0-29	16 mm	1500 mm	606 mm	153,5 kN	61,4 kN	40 kN	153%
RKS-SA/E-7,5-32	20 mm	1750 mm	745 mm	235,9 kN	94,4 kN	60 kN	157%
RKS-SA/E-10,0-39	20 mm	1900 mm	895 mm	283,4 kN	113,4 kN	80 kN	142%
RKS-SA/E-12,5-50	25 mm	2200 mm	796 mm	315,0 kN	126,0 kN	100 kN	126%
RKS-SA/E-17,0-50	28 mm	2500 mm	946 mm	419,3 kN	167,7 kN	136 kN	123%
RKS-SA/E-22,0-50	28 mm	3000 mm	1146 mm	508,0 kN	203,2 kN	176 kN	115%

8.7 RANDBEWEHRUNG

8.7.1 Lastfall Zentrischer Zug

Die Randbewehrung $A_{S,R}$ wird auf die Horizontalkomponente H der Ankerlast Z bemessen. Beim Lastfall Zentrischer Zug ist eine Neigung der Kraft Z um $\beta \le 30^{\circ}$ zur Ankerachse möglich. Die H-Komponente der Ankerlast beträgt maximal H=0,5 Z (vgl. Abs. 7.1).

Die Randbewehrung besteht aus 2 Stäben mit dem Stabdurchmesser $d_{S,R}$. Zusätzlich zur Randbewehrung werden auch die horizontalen Bewehrungsquerschnitte der Grundbewehrung $a_{S,G}$ in Rechnung gestellt, die sich innerhalb der Ankerlänge I befinden. Die Anzahl n_{Gh} der angesetzten Horizontalstäbe der Grundbewehrung wird wie folgt ermittelt:

$$n_{Gh} = (I + 75mm) / 150mm$$
 (121)

Dabei wird auf ganze Stabanzahlen auf- oder abgerundet.

Die Stahltragfähigkeit H_{Rk,R} der Randbewehrung und der angerechneten Grundbewehrung beträgt in Ankerhorizontalrichtung:

$$H_{BkB} = 2 (d_{SB}^2 / 4 \cdot \pi + n_{Gh} \cdot A_{SGi}) \cdot f_{sk}$$
 (122)

Die zulässige Ankerzugkraft $N_{zul,R}$ und das Sicherheitsniveau η_R betragen:

$$N_{\text{zul,B}} = 2 H_{\text{Bk,B}} / \gamma_{\text{S}} \qquad \text{mit } \gamma_{\text{S}} = 2,5 \qquad (123)$$

$$\eta_{\rm B} = N_{\rm zul\,B} / N_{\rm N} \ge 100\%$$
 (124)

Die Stahltragfähigkeiten der anteiligen Grundbewehrung und der Randbewehrung im Lastfall zentrischer Zug sind in Tabelle 25 für alle Ankergrößen zusammengestellt.

Tabelle 27: Ankertraglasten infolge Stahltragfähigkeit der Grund- und Randbew. im LF Zentrischer Zug

	Randbe	wehrung		Grundbe	wehrung	
Anker	ø	Querschnitt	Bruchkegel	Ø	Anzahl	Querschnitt
	d _{s,R}	A _{S,R}	h _{ef}	d _{s,G}	n _H	A _{S,G}
RKS-SA/E-1,4-20	8 mm	50 mm²	175 mm	6 mm	2	57 mm²
RKS-SA/E-2,5-23	8 mm	50 mm²	201 mm	6 mm	2	57 mm²
RKS-SA/E-4,0-27	10 mm	79 mm²	235 mm	6 mm	2	57 mm²
RKS-SA/E-5,0-29	10 mm	79 mm²	252 mm	6 mm	2	57 mm²
RKS-SA/E-7,5-32	10 mm	79 mm²	278 mm	6 mm	2	57 mm²
RKS-SA/E-10,0-39	12 mm	113 mm²	338 mm	6 mm	3	85 mm²
RKS-SA/E-12,5-50	14 mm	154 mm²	434 mm	7 mm	3	115 mm²
RKS-SA/E-17,0-50	14 mm	154 mm²	434 mm	8 mm	3	151 mm²
RKS-SA/E-22,0-50	16 mm	201 mm²	434 mm	9 mm	3	191 mm²

Anker	Ankertra	gfähigkeit	Nennlast	Sicherheit
	H _{Rk,R}	N _{zul,R}	N _N	$\eta_{\scriptscriptstyle R}$
RKS-SA/E-1,4-20	106,8 kN	85,5 kN	14,0 kN	610%
RKS-SA/E-2,5-23	106,8 kN	85,5 kN	25,0 kN	342%
RKS-SA/E-4,0-27	135,1 kN	108,1 kN	40,0 kN	270%
RKS-SA/E-5,0-29	135,1 kN	108,1 kN	50,0 kN	216%
RKS-SA/E-7,5-32	135,1 kN	108,1 kN	75,0 kN	144%
RKS-SA/E-10,0-39	197,9 kN	158,3 kN	100,0 kN	158%
RKS-SA/E-12,5-50	269,4 kN	215,5 kN	125,0 kN	172%
RKS-SA/E-17,0-50	304,7 kN	243,8 kN	170,0 kN	143%
RKS-SA/E-22,0-50	391,9 kN	313,5 kN	220,0 kN	143%

8.7.2 Lastfall Schrägzug

Die Randbewehrung im Lastfall Schrägzug $A_{S,RS}$ wird auf die Horizontalkomponente H der Ankerlast bemessen. Bei Schrägzugbeanspruchung S des Ankers ist eine Neigung der Kraft um β =90° zur Ankerachse möglich. Die H-Komponente der Schrägzuglast beträgt somit maximal H=S (vgl. Abs. 7.1).

Die Randbewehrung besteht aus 2 Stäben mit dem Stabdurchmesser $d_{s,R}$. Zusätzlich zur Randbewehrung werden auch die horizontalen Bewehrungsquerschnitte der Grundbewehrung $a_{s,g}$ in Rechnung gestellt, die sich innerhalb der Ankerlänge I befinden. Die Anzahl n_g der angesetzten Horizontalstäbe wird gemäß Abs. 8.7.1 ermittelt:

Die Stahltragfähigkeit H_{Rk,RS} der Randbewehrung und der angerechneten Grundbewehrung beträgt im Lastfall Schrägzug in Ankerhorizontalrichtung:

$$H_{BkBS} = 2 (d_{SBS}^2 / 4 \cdot \pi + n_G \cdot A_{SGi}) \cdot f_{sk}$$
 (125)

Die zulässige Ankerzugkraft $S_{\text{zul},RS}$ und das Sicherheitsniveau η_{RS} betragen:

$$S_{zul,RS} = H_{Rk,RS} / \gamma_S$$
 mit $\gamma_S = 2.5$ (126)

$$\eta_{BS} = N_{zulBS} / S_N \ge 100\%$$
 (127)

Die Stahltragfähigkeiten der anteiligen Grundbewehrung und der Randbewehrung im Lastfall Schrägzug sind in Tabelle 28 für alle Ankergrößen zusammengestellt.

Tabelle 28: Ankertraglasten infolge Stahltragfähigkeit der Grund- und Randbew. im Lastfall Schrägzug

	Randbewehrung		Grundbewehrung			
Anker	ø	Querschnitt	Bruchkegel	Ø	Anzahl	Querschnitt
	d _{s,R}	A _{S,R}	h _{ef}	d _{s,G}	n _H	A _{S,G}
RKS-SA/E-1,4-20	8 mm	50 mm²	175 mm	6 mm	2	57 mm²
RKS-SA/E-2,5-23	10 mm	79 mm²	201 mm	6 mm	2	57 mm²
RKS-SA/E-4,0-27	12 mm	113 mm²	235 mm	6 mm	2	57 mm²
RKS-SA/E-5,0-29	12 mm	113 mm²	252 mm	6 mm	2	57 mm²
RKS-SA/E-7,5-32	12 mm	113 mm²	278 mm	6 mm	2	57 mm²
RKS-SA/E-10,0-39	14 mm	154 mm²	338 mm	6 mm	3	85 mm²
RKS-SA/E-12,5-50	16 mm	201 mm²	434 mm	7 mm	3	115 mm²
RKS-SA/E-17,0-50	20 mm	314 mm²	434 mm	8 mm	3	151 mm²
RKS-SA/E-22,0-50	25 mm	491 mm²	434 mm	9 mm	3	191 mm²

Anker	Ankertra	gfähigkeit	Nennlast	Sicherheit
	H _{Rk,R}	S _{zul,R}	S _N	$\eta_{\scriptscriptstyle R}$
RKS-SA/E-1,4-20	106,8 kN	42,7 kN	11,2 kN	381%
RKS-SA/E-2,5-23	135,1 kN	54,0 kN	20,0 kN	270%
RKS-SA/E-4,0-27	169,6 kN	67,9 kN	32,0 kN	212%
RKS-SA/E-5,0-29	169,6 kN	67,9 kN	40,0 kN	170%
RKS-SA/E-7,5-32	169,6 kN	67,9 kN	60,0 kN	113%
RKS-SA/E-10,0-39	238,8 kN	95,5 kN	80,0 kN	119%
RKS-SA/E-12,5-50	316,5 kN	126,6 kN	100,0 kN	127%
RKS-SA/E-17,0-50	465,0 kN	186,0 kN	136,0 kN	137%
RKS-SA/E-22,0-50	681,7 kN	272,7 kN	176,0 kN	155%

8.8 AUFRICHTBEWEHRUNG

Die Aufrichtbewehrung ist für den Lastfall Querzug nachzuweisen. Die Querzugbeanspruchung führt gemäß Tragmodell aus Abs. 7.3 zu einer Rückhängekraft B in der Aufrichtbewehrung, für die diese zu bemessen ist:

$$B = V \cdot (x_1 + x_2) / x_1 \qquad mit x_1 = r \qquad (128)$$

$$mit x_2 = I - r - \underline{c}/2$$

Durch Umstellen ergibt sich:

$$V = B \cdot x_1 / (x_1 + x_2) \tag{129}$$

Die Tragfähigkeit $V_{\text{Rk,Q}}$ der um $\delta{=}45^{\circ}$ geneigten, um den Anker geführten Aufrichtbewehrung auf Querzug beträgt:

$$V_{BkO} = 2 \cdot A_{SO} \cdot \sin \delta x_1 / (x_1 + x_2) \cdot f_{sk}$$
 (130)

Die zulässige Querkraft $V_{\text{zul},Q}$ und das Sicherheitsniveau η_Q betragen:

$$V_{\text{zul,Q}} = V_{\text{Bk,Q}} / \gamma_{\text{S}}$$
 mit $\gamma_{\text{C}} = 2.5$ (131)

$$\eta_{Q} = V_{zul,Q} / Q_{N} \ge 100\%$$
(132)

Die Tragfähigkeiten der Aufrichtbewehrung im Lastfall Querzug sind für die Ankertypen SA in Tabelle 29 und für die Ankertypen SE in Tabelle 30 zusammengestellt.

Tabelle 29: Tragfähigkeit der Ankertypen SA auf Betonausbruch an den Bauteilseiten Lastfall Querzug

	Ankerge	ometrie	Aufrichtb	ewehrung	Ambantua	-£26:-124	Nonnlast	Ciahauhait
Anker	Hebe	larme	ø	Querschnitt	Ankertra	gfähigkeit	Nennlast	Sicherheit
	x ₁	X ₂	d _{s,Q}	A _{s,Q}	V _{Rk,Q} V _{zul,Q}		Q _N	η _Q
RKS-SA-1,4-20	45 mm	140 mm	10 mm	79 mm²	42,0 kN	16,8 kN	7,0 kN	240%
RKS-SA-2,5-23	45 mm	168 mm	12 mm	113 mm²	63,0 kN	25,2 kN	12,5 kN	202%
RKS-SA-4,0-27	70 mm	180 mm	14 mm	154 mm²	78,4 kN	31,3 kN	20,0 kN	157%
RKS-SA-5,0-29	70 mm	200 mm	16 mm	201 mm²	105,3 kN	42,1 kN	25,0 kN	169%
RKS-SA-7,5-32	90 mm	203 mm	20 mm	314 mm²	153,8 kN	61,5 kN	37,5 kN	164%
RKS-SA-10,0-39	90 mm	273 mm	20 mm	314 mm²	167,0 kN	66,8 kN	50,0 kN	134%
RKS-SA-12,5-50	90 mm	375 mm	25 mm	491 mm²	279,9 kN	112,0 kN	62,5 kN	179%
RKS-SA-17,0-50	90 mm	375 mm	25 mm	491 mm²	279,9 kN	112,0 kN	85,0 kN	132%
RKS-SA-22,0-50	90 mm	375 mm	25 mm	491 mm²	279,9 kN	112,0 kN	110,0 kN	102%

Tabelle 30: Tragfähigkeit der Ankertypen SE auf Betonausbruch an den Bauteilseiten Lastfall Querzug

	Ankerge	ometrie	Aufrichtb	ewehrung	Ankortra	gfähigkeit	Nennlast	Sicherheit
Anker	Hebe	larme	ø	Querschnitt	Alikertia	granigkeit	Neiilliast	Sichemen
	x ₁	X ₂	d _{s,Q}	A _{s,Q}	$V_{Rk,Q}$	V _{zul,Q}	Q _N	ηα
RKS-SA-1,4-20	42 mm	143 mm	10 mm	79 mm²	42,9 kN	17,2 kN	7,0 kN	245%
RKS-SA-2,5-23	43 mm	170 mm	12 mm	113 mm²	64,0 kN	25,6 kN	12,5 kN	205%
RKS-SA-4,0-27	51 mm	200 mm	14 mm	154 mm²	86,9 kN	34,7 kN	20,0 kN	174%
RKS-SA-5,0-29	51 mm	220 mm	16 mm	201 mm²	115,6 kN	46,2 kN	25,0 kN	185%
RKS-SA-7,5-32	78 mm	215 mm	20 mm	314 mm²	162,9 kN	65,2 kN	37,5 kN	174%
RKS-SA-10,0-39	78 mm	285 mm	20 mm	314 mm²	174,3 kN	69,7 kN	50,0 kN	139%
RKS-SA-12,5-50	89 mm	377 mm	25 mm	491 mm²	281,0 kN	112,4 kN	62,5 kN	180%
RKS-SA-17,0-50	89 mm	377 mm	25 mm	491 mm²	281,0 kN	112,4 kN	85,0 kN	132%
RKS-SA-22,0-50	89 mm	377 mm	25 mm	491 mm²	281,0 kN	112,4 kN	110,0 kN	102%

8.9 BETONPRESSUNG RINGKUPPLUNG

8.9.1 Tragfähigkeit LF Zentrischer Zug

Beim Lastfall Zentrischer Zug ist eine Neigung der Kraft Z um $\beta \leq 30^{\circ}$ zur Ankerachse möglich (vgl. Abs. 7.1). Durch die Neigung der äußeren Ankerzugkraft Z zur axialen Verankerungskraft N entsteht zwischen der Ringkupplung und dem Beton des Aussparungskörpers eine Abstützkraft A, die das Kräftegleichgewicht zwischen Z und N herstellt (vgl. Bild 16).

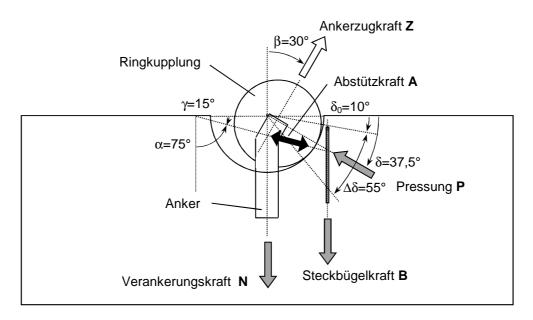


Bild 16: Tragmodell Anker/Ringkupplung/Bauteil bis 30° Ankerlastneigung (Zentrischer Zug)

Zur Bestimmung der maximalen Abstützkraft wurden Versuche an einbetonierten Ankern, die mit Dehnungsmessstreifen (DMS) versehen waren, am IMB der RWTH Aachen durchgeführt (vgl. Bericht B10-07 [10]). Die Auswertung der Versuche an 5,0t-Ankern ergab, dass der Winkel der Abstützkraft α =75-90° zur Ankerachse beträgt und dass damit die Abstützkraft A mit α =75° auf der sicheren Seite wie folgt zu bestimmen ist (vgl. Bild 17):

$$A = Z \cdot \sin \beta / \sin \alpha = Z \cdot \sin 30^{\circ} / \sin 75^{\circ} = 0,518 Z$$
 (133)

Für die axiale Verankerungskraft N ergibt sich:

$$N = Z \cdot \sin (180^{\circ} - \alpha - \beta) / \sin \alpha = Z \cdot \sin 75^{\circ} / \sin 75^{\circ} = Z$$
 (134)

Es wird angenommen, dass die Abstützkraft A im Bauteil durch ein Kräftepaar aufgenommen wird, das sich aus der resultierenden Betonpressung P und der Rückhängekraft B der Steckbügelbewehrung zusammensetzt. Die Betonpressung wird auf einem Winkelsektor der Ringkupplung von $\Delta\delta$ =55° angesetzt, beginnend ab δ_0 =10° unterhalb der Horizontalen. Die Neigung der Pressungsresultierenden P ist somit δ =37,5° zur Horizontalen (vgl. Bild 16). Die vertikale Steckbügelbewehrung schließt das Krafteck.

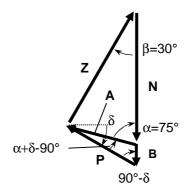


Bild 17: Krafteck des Tragmodells Anker/Ringkupplung/Bauteil bis 30° Ankerlastneigung (Zentr. Zug)

Gemäß Bild 17 ergibt sich:

$$P = Z \cdot \sin \beta / \sin (90^{\circ} - \delta) \tag{135}$$

$$P = Z \cdot \sin 30^{\circ} / \sin 52,5^{\circ} = 0,630 Z \quad \text{mit } \delta = 37,5^{\circ}$$
 (136)

und

$$B = A \cdot \sin (\alpha + \delta - 90^{\circ}) / \sin (90^{\circ} - \delta)$$
(137)

$$B = Z \cdot \sin \beta \cdot \sin (\alpha + \delta - 90^{\circ}) / [\sin \alpha \cdot \sin (90^{\circ} - \delta)]$$
 (138)

Mit δ =37,5°, α =75°, β =30° gilt:

$$B = Z \cdot \sin 30^{\circ} \cdot \sin 22.5^{\circ} / [\sin 75^{\circ} \cdot \sin 52.5^{\circ}] = 0.25 Z$$
 (139)

Die Bemessung der Steckbügelbewehrung im Lastfall zentrischer Zug erfolgt in Abschnitt 8.5.2 und liegt in Bezug auf die Rückhängekraft B auf der sicheren Seite.

Die Betonpressungen werden auf einem Winkelsektor v n $\Delta\delta$ =55° und über die halbrundförmige Breite b_{RK} der Ringkupplung angenommen. Der Durchmesser der Ringkupplung wird mit d_{RK} bezeichnet. Die Fläche A_p dieses doppelgekrümmten Bereichs wird vereinfachend aus dem Produkt der vertikalen und horizontalen Kreisbogen s_v und s_h bestimmt:

$$A_p = s_v \cdot s_h$$
 Pressungsfläche (140)

$$s_v = d_{RK} \cdot \Delta \delta \cdot \pi / 360^\circ = 0,480 d_{RK} \qquad \text{mit } \Delta \delta = 55^\circ \tag{141}$$

$$s_h = \pi / 2 \cdot b_{BK} = 1,571 b_{BK}$$
 (142)

Aus den DMS-Schrägzugversuchen wurde ersichtlich, dass die Betonpressungen p infolge der Einschnürung durch die Randbewehrungsstäbe und die Steckbügelbewehrung eine Größenordnung annehmen, die die Grenzwerte der Teilflächenpressung nach DIN 1045-1 [1], Abs. 10.7 überschreiten. Die Schrägzugversuche wurden auf hohem Lastniveau abgebrochen, ohne dass ein Versagen auftrat. Im Folgenden wird daher eine erhöhte Teilflächenpressung von $f_{cok}=3 \cdot f_{ck}$ auf der Pressungsfläche angesetzt:

$$P_{Rk} = A_p \cdot f_{cpk}$$
 $f_{cpk} = 36 \text{ N/mm}^2 (143)$

Die Grenzzugkraft der Anker Z_{Rk,P} infolge der Begrenzung der Betonpressungen beträgt:

$$Z_{Rk,P} = P_{Rk} \cdot \sin(90^{\circ}\delta) / \sin\beta$$
 (144)

$$Z_{Rk,P} = P_{Rk} \cdot \sin 52.5^{\circ} / \sin 30^{\circ} = 1,589 P_{Rk}$$
 (145)

Die zulässige Ankerzugkraft $N_{\text{zul},P}$ und das Sicherheitsniveau η_{P} betragen:

$$N_{zul,P} = Z_{Rk,P} / \gamma_C \qquad \text{mit } \gamma_C = 2,5 \qquad (146)$$

$$\eta_{P} = N_{\text{zul}P} / N_{N} \ge 100\%$$
 (147)

Die Tragfähigkeiten infolge Betonpressung an der Ringkupplung im Lastfall zentrischer Zug sind in Tabelle 31 für alle Ankergrößen zusammengestellt.

Tabelle 31: Ankertraglasten infolge Betonpressungstragfähigkeit

	Ringku	pplung	ı	Pressungsfläch	e
Anker	Ø	Breite	Bogenlänge vertikal	Bogenlänge horizontal	Pressungs- fläche
	d _{RK}	b _{RK}	s _V	S _H	A_P
RKS-SA/E-1,4-20	79 mm	27 mm	37,9 mm	42,4 mm	16,1 cm²
RKS-SA/E-2,5-23	79 mm	27 mm	37,9 mm	42,4 mm	16,1 cm²
RKS-SA/E-4,0-27	98 mm	36 mm	47,0 mm	56,5 mm	26,6 cm ²
RKS-SA/E-5,0-29	98 mm	36 mm	47,0 mm	56,5 mm	26,6 cm²
RKS-SA/E-7,5-32	137 mm	50 mm	65,8 mm	78,5 mm	51,6 cm²
RKS-SA/E-10,0-39	137 mm	50 mm	65,8 mm	78,5 mm	51,6 cm ²
RKS-SA/E-12,5-50	210 mm	72 mm	100,8 mm	113,1 mm	114,0 cm²
RKS-SA/E-17,0-50	210 mm	72 mm	100,8 mm	113,1 mm	114,0 cm²
RKS-SA/E-22,0-50	210 mm	72 mm	100,8 mm	113,1 mm	114,0 cm²

Anker	Ar	nkertragfähigk	Nennlast	Sicherheit	
	P _{Rk}	$\mathbf{Z}_{\mathrm{Rk,P}}$	N _{zul,P}	N _N	$\eta_{\scriptscriptstyle P}$
RKS-SA/E-1,4-20	58 kN	92 kN	37 kN	14 kN	262%
RKS-SA/E-2,5-23	58 kN	92 kN	37 kN	25 kN	147%
RKS-SA/E-4,0-27	96 kN	152 kN	61 kN	40 kN	152%
RKS-SA/E-5,0-29	96 kN	152 kN	61 kN	50 kN	122%
RKS-SA/E-7,5-32	186 kN	295 kN	118 kN	75 kN	157%
RKS-SA/E-10,0-39	186 kN	295 kN	118 kN	100 kN	118%
RKS-SA/E-12,5-50	410 kN	651 kN	260 kN	125 kN	208%
RKS-SA/E-17,0-50	410 kN	651 kN	260 kN	170 kN	153%
RKS-SA/E-22,0-50	410 kN	651 kN	260 kN	220 kN	118%

8.9.2 Tragfähigkeit LF Schrägzug

Im Lastfall Schrägzug ($\beta>30^\circ$) erfolgt die Abtragung der Horizontalkomponente der schrägen Zuglast über die eingelegte Schrägzugbewehrung, vgl. Abschnitt 0. Ein Nachweis der Betonpressung entfällt somit.

9 VERSUCHSAUSWERTUNG

9.1 ALLGEMEINES

Zur Verifizierung der verwendeten Bemessungsmodelle und zur Kalibrierung der angesetzten Parameter wurden einige exemplarische Auszieh-, Schrägzug- und Ösenzugversuche an ausgewählten Ankern durchgeführt, vgl. [10], [11], [12], [13] und [14].

In den hier maßgebenden Ausziehversuchen wurden Aufstellanker mitsamt der zugehörigen Bewehrung in Betonkörper einbetoniert und unter Querzugbeanspruchung bis zum Bruch belastet.

Die in den Versuchen erzielten Bruch- oder Maximallasten werden mit den Werten verglichen, die sich aus den Bemessungsmodellen ergeben. In den Bemessungsgleichungen wird der Sicherheitsbeiwert zu $\gamma=1,0$ gesetzt, um die Versuche auf Bruchlastniveau kalibrieren zu können.

Die Auswertung der Ösenzugversuche erfolgt in den Dokumenten TP07-22-9 [11] und B10-07 [12].

9.2 MATERIALFESTIGKEITEN

Die Materialfestigkeiten für die Auswertung der Versuche werden im Folgenden bestimmt. Da bei den Versuchen an den Aufstellankern nur Betonversagen maßgebend war, werden die Materialwerte für den Ankerstahl und den Betonstahl hier nicht aufgeführt.

Beton

Am Institut für Massivbau an der RWTH Aachen (IMB) wurden am Tag des jeweiligen Ausziehversuchs die Betonwürfeldruckfestigkeit $f_{cc,cube}$ und die Spaltzugfestigkeit $f_{cct,sp}$ an Spaltzugzylindern ermittelt. Die Festigkeiten sind Mittelwerte aus Messungen an i.d.R. drei Würfeln (150 mm) , bzw. drei Zylindern (300/150 mm). Die für die Bemessung erforderlichen Betonkennwerte werden aus diesen Festigkeiten rechnerisch abgeleitet:

Zylinderdruckfestigkeit
$$f_{cc, cyl} = 0.80 f_{cc, cube}$$
 (148)

zentrische Betonzugfestigkeit
$$f_{cct,z} = 0.90 f_{cct,sp}$$
 (149)

Verbundspannung
$$f_{cb} = 2,25 f_{cct,z}$$
 (150)

9 Versuchsauswertung

Ein maßgebendes Versagenskriterium der Transportanker bei den vorliegenden Versuchen ist ein Betonausbruch des Ankers. Dieses Versagen ist im Wesentlichen von der Betonzugfestigkeit abhängig. In der Bemessungsformel ist jedoch der Wert der Zylinderdruckfestigkeit f_{ck}, bzw. f_{c,cyl} einzusetzen. Da bei den Versuchen am IMB das Verhältnis zwischen Zug- und Druckfestigkeit des Betons im Mittel um ca. 20% geringer als gemäß DIN EN 1992-1-1 [2], Tab. 3.1 ausfällt, erfolgt die Auswertung der Versuche indirekt über die gemessene Betonzugfestigkeit.

Nach [2], Tab. 3.1 besteht zwischen dem Mittelwert der Betonzugfestigkeit und der Zylinderdruckfestigkeit folgender Zusammenhang:

$$f_{ctm} = 0.30 (f_{ck})^{2/3}$$
 Normgleichung (151)

Die gemessenen Zugfestigkeiten können über eine an die Normkurven angepasste Korrelationsgleichung aus den gemessenen Zylinderdruckfestigkeiten $f_{c,cyl}$ approximiert werden. Die Anpassung erfolgt über die Ergänzung des Faktors 0,70 im Klammerterm. Die im Bauteil vorhandene zentrische Zugfestigkeit $f_{cct,z}$, die aus der Messgröße der Spaltzugfestigkeit $f_{cct,sp}$ abgeleitet wird, ist dabei als Mittelwert der Zugfestigkeit f_{ctm} zu verstehen:

$$f_{cct,z} = 0.30 (0.70 f_{cc,cyl})^{2/3}$$
 Approximationsgleichung (152)

Für die Auswertung der Versuche wird die vorliegende Zugfestigkeit $f_{cc,z}$ mit Hilfe der Normgleichung in die äquivalente Betonzylinderdruckfestigkeit $f_{cc,cyl,equ}$ bzw. die äquivalente Betonwürfeldruckfestigkeit $f_{cc,cube,equ}$ umgerechnet.

Über die fiktive Festigkeit $f_{cc,cube,equ}$ wird die Bemessungsformel für Betonausbruch an den Versuchsergebnissen kalibriert:

$$f_{cc,cyl,equ} = (f_{cct,z} / 0,30)^{1.5}$$
 äquivalente Zylinderdruckfestigkeit (153)

$$f_{cc,cube,equ} = f_{cc,cyl,equ} / 0.8$$
 (154)

$$f_{cc,cube,equ} = 7.6 f_{cct,z}^{1.5}$$
 äquivalente Würfeldruckfestigkeit (155)

9.3 RECHNERISCHE TRAGLASTEN

Bei den Versuchen war transversaler Betonausbruch unter Querzuglasten auf den Bauteilseitenflächen maßgebend. Die rechnerischen Traglasten werden daher gemäß Abschnitt 8.3.4 unter Verwendung der gemessenen, Materialkennwerten (vgl. Abs. 9.2) ausgewertet:

$$F_{Rk,C,T} = V_{Rk,C,T} = 3,75 d_{eq}^{\alpha} \cdot h_{ef}^{\beta} \cdot c_1^{1,5} \cdot k_a \cdot \sqrt{f_{ck,cube,equ}}$$

$$(156)$$

9.4 VERSUCHSLASTEN

Bei allen Versuchskörpern wurde die Bruchlast, bzw. Maximallast F_u und die zugehörigen Verschiebung u_u gemessen. Die Darstellung des Kraft-/Verschiebungsverlaufs erfolgt im Anhang B des Dokuments TP07-22-8 (Ausziehversuche an BGW-Transportankern).

9.5 AUSWERTUNG

Die Auswertung der Ausziehversuche erfolgt über eine Gegenüberstellung der tatsächlichen Maximallast $F_{Test,u}$ zu den rechnerischen, charakteristischen Tragfähigkeiten F_{Rk} , die aus den gemessenen, bzw. angenommenen Materialfestigkeiten bestimmt werden.

Dabei werden folgende Grundsätze eingehalten:

- Die maßgebende Versagensart lässt sich aus den rechnerischen, charakteristischen Tragfähigkeiten F_{Rk} (vgl. Abs. 0) eindeutig bestimmen.
- Die im Versuch erzielten Bruchlasten F_{U} sollen mindestens das 1,0-fache aller rechnerischen, charakteristischen Tragfähigkeiten F_{Rk} betragen.

Die Nachweise werden über das Bruchsicherheitsverhältnis η_U mit dem maßgebenden Wert der rechnerischen Betonausbruchtragfähigkeit $F_{Rk,C}$ geführt:

Bruchsicherheit
$$\eta = F_{Testu}/F_{Rk,C,T} \ge 1,00$$
 (157)

Die Auswertung der Versuchsergebnisse mit den rechnerischen Tragfähigkeiten erfolgt in tabellarischer Form in den folgenden Abschnitten.

9 Versuchsauswertung

9.6 VERSUCHSBEWERTUNG

Bei den Querzugversuchen an Aufstellankern RKS-SA-2,5 und RKS-SA-4,0 traten im Verlauf der Belastung zunächst Risse im Bereich der Anker und an den obenliegenden Bauteilflächen auf. Im weiteren Versuchsfortschritt fand in allen Fällen ein Betonaus-bruch statt, bei dem sich zuvor die Biegerisse weiteten und schließlich schollenartige Betonabplatzungen auftraten, teilweise gefolgt von einem Herauslösen des Ankers.

An den Stirnseiten der Betonscheiben traten zudem infolge des Lastabtrags als Einfeldbalken zu den seitlichen Auflagerträgern Biege- und Schubrisse auf, die sich im Nachbruchbereich aufweiteten und die im Bereich der Zugzone zu einem Abplatzen der Betondeckung führte, bis es zu einem Einschnüren der stirnseitigen Druckzone kam.

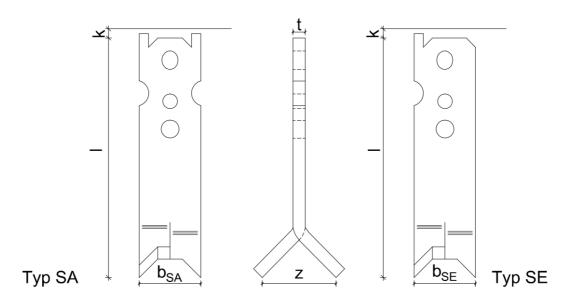
		Anker		eff. Verank	Querrand-	effekt. Rand-	Spreizung
Anker	Dicke	Breite	äquival. Ø	äquival. Ø Tiefe		abstand	Spreizung
	t	b _{SE}	d _{equ}	h _{ef}	a _{QR,SE}	c ₁	s
RKS-SA/E-2,5-23	10 mm	40 mm	20 mm	240 mm	62,5 mm	90 mm	100 mm
RKS-SA/E-4,0-27	12 mm	55 mm	26 mm	280 mm	75,0 mm	110 mm	135 mm

Anker	Flächen- faktor	Beiwerte E		Betonwürfel- druck- festigkeit	Betonspaltzu gfestigkeit	Betonwürfel- druck- festigkeit	
	k _a	α	β	f _{cc,cube}	f _{cct,sp}	f _{cc,cube,equ}	
RKS-SA/E-2,5-23	1,58	0,16	0,08	20,4 N/mm²	1,22 N/mm²	8,81 N/mm²	
RKS-SA/E-4,0-27	1,67	0,16	0,08	20,1 N/mm²	1,22 N/mm²	8,81 N/mm²	

Anker	rechner. Tragfähig- keit		Bruchlasten		Sicherheit			
	$V_{Rk,C,T}$		$V_{Test,u}$		η			
RKS-SA/E-2,5-23	37,3 kN	38,5 kN	38,5 kN 40,5 kN 41,5 kN			109%	111%	
RKS-SA/E-4,0-27	55,5 kN	54,9 kN	51,3 kN	55,0 kN	99%	92%	99%	

Aachen, den 20. März 2014

Dr.-Ing. N. Kerkeni


Dipl.-Ing. C. Bergholz

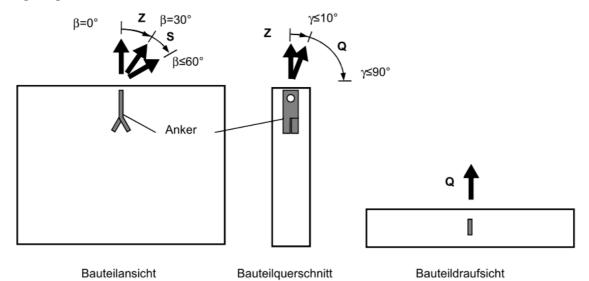
Verwendungsanleitung und Tragfähigkeitstabellen

Seite 1 / 7

1. Ankerabmessungen

Den Aufstellanker gibt es in den Ausführungen beidseitiger Aufstellanker SA und einseitiger Aufstelleranker Typ SE.

			Ankergeometrie							
Anker	Laststufe	Lastgruppe	Länge	Breite SA	Breite SE	Dicke	Spreizung	Spalt		
			I	b _{SA}	b _{SE}	t	Z	k		
RKS-SA/E-1,4-20	1,4 t	254	200 mm	55 mm	45 mm	6 mm	60 mm	10 mm		
RKS-SA/E-2,5-23	2,5 t	2,5 t	230 mm	55 mm	45 mm	12 mm	70 mm	10 mm		
RKS-SA/E-4,0-27	4,0 t	F.0.4	270 mm	75 mm	60 mm	15 mm	80 mm	10 mm		
RKS-SA/E-5,0-29	5,0 t	5,0 t	290 mm	75 mm	60 mm	17,5 mm	80 mm	10 mm		
RKS-SA/E-7,5-32	7,5 t	10,0 t	320 mm	120 mm	100 mm	15 mm	110 mm	15 mm		
RKS-SA/E-10,0-39	10,0 t	10,0 t	390 mm	120 mm	100 mm	20 mm	110 mm	15 mm		
RKS-SA/E-12,5-50	12,5 t		500 mm	150 mm	120 mm	20 mm	140 mm	15 mm		
RKS-SA/E-17,0-50	17,0 t	26,0 t	500 mm	150 mm	120 mm	25 mm	140 mm	15 mm		
RKS-SA/E-22,0-50	22,0 t		500 mm	150 mm	120 mm	30 mm	140 mm	15 mm		

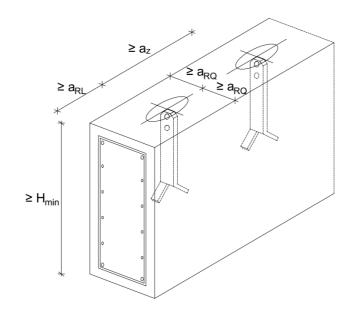


${\bf BGW\ Transportanker-Typ:\ Aufstellanker}$

Verwendungsanleitung und Tragfähigkeitstabellen

Seite 2 / 7

2. Tragfähigkeiten, Lastfälle

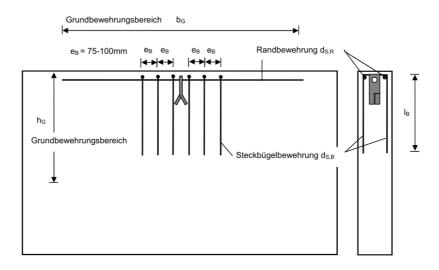

Anker	Laststufe	Lastgruppe	zulässige Zuglast β≤30° Z _{zul}	zulässige Schrägzuglast 30° < β < 60 S _{zul}	zulässige Querzuglast** 10° < γ < 90° Q _{zul}
RKS-SA/E-1,4-20	1,4 t	2.5+	14 kN	11,2 kN	7,0 kN
RKS-SA/E-2,5-23	2,5 t	2,5 t	25 kN	20 kN	12,5 kN
RKS-SA/E-4,0-27	4,0 t	5,0 t	40 kN	32 kN	20,0 kN
RKS-SA/E-5,0-29	5,0 t	5,0 t	50 kN	40 kN	25,0 kN
RKS-SA/E-7,5-32	7,5 t	10,0 t	75 kN	60 kN	37,5 kN
RKS-SA/E-10,0-39	10,0 t	10,0 t	100 kN	80 kN	50,0 kN
RKS-SA/E-12,5-50	12,5 t		125 kN	100 kN	62,5 kN
RKS-SA/E-17,0-50	17,0 t	26,0 t	170 kN	136 kN	85,0 kN
RKS-SA/E-22,0-50	22,0 t		220 kN	176 kN	110 kN

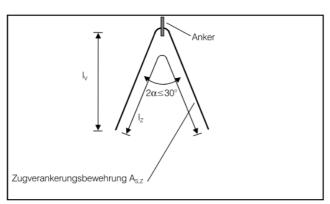
Verwendungsanleitung und Tragfähigkeitstabellen

Seite 3 / 7

3. Mindestabstände, Mindestbauteilabmessungen

	Zwischen-	Längsrand-	Querrandabstand					
Ankergröße	abstand	abstand	Mit Zugbe	ewehrung	Ohne Zugbewehrung			
	a _z	a _{RL}	a _{RQ,SA} a _{RQ,SE}		a _{RQ,SA}	a _{RQ,SE}		
RKS-SA/E-1,4-20	700 mm	350 mm	50 mm	45 mm	50 mm	45 mm		
RKS-SA/E-2,5-23	800 mm	400 mm	60 mm	60 mm	60 mm	60 mm		
RKS-SA/E-4,0-27	950 mm	475 mm	75 mm	70 mm	75 mm	75 mm		
RKS-SA/E-5,0-29	1000 mm	500 mm	80 mm	80 mm 70 mm		95 mm		
RKS-SA/E-7,5-32	1200 mm	600 mm	88 mm	80 mm	125 mm	125 mm		
RKS-SA/E-10,0-39	1500 mm	750 mm	100 mm	100 mm	140 mm	140 mm		
RKS-SA/E-12,5-50	1500 mm	750 mm	120 mm	120 mm	150 mm	150 mm		
RKS-SA/E-17,0-50	1500 mm	750 mm	150 mm	150 mm	200 mm	200 mm		
RKS-SA/E-22,0-50	1500 mm	750 mm	180 mm	180 mm	300 mm	300 mm		




BGW Transportanker-Typ: Aufstellanker

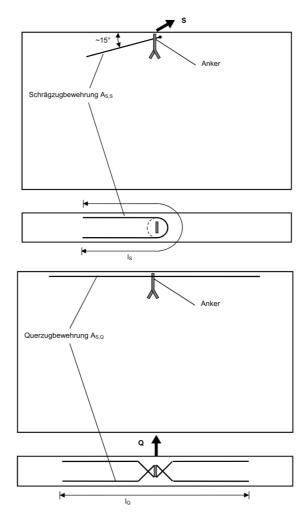
Verwendungsanleitung und Tragfähigkeitstabellen

Seite 4 / 7

4. Bewehrung

	_	kerungs-			Zentrische Zuglast			
Anker	bewehrung (optional)		Grundbe	Grundbewehrung		Steckbügelbewehrung		
Alikei	Ø Stablänge		Ø	Querschnitt	Ø	Anzahl	Ø	Stablänge
	d _{s,z}	I _z	d _{s,G}	a _{s,G}	d _{S,R}	n	d _{S,B}	I _B
RKS-SA/E-1,4-20	10 mm	650 mm	6 mm	188 mm²/m	8 mm	2	6 mm	500 mm
RKS-SA/E-2,5-23	12 mm	1000 mm	6 mm	188 mm²/m	8 mm	2	8 mm	600 mm
RKS-SA/E-4,0-27	16 mm	1200 mm	6 mm	188 mm²/m	10 mm	2	8 mm	700 mm
RKS-SA/E-5,0-29	16 mm	1500 mm	6 mm	188 mm²/m	10 mm	2	10 mm	800 mm
RKS-SA/E-7,5-32	20 mm	1750 mm	6 mm	188 mm²/m	10 mm	4	10 mm	800 mm
RKS-SA/E-10,0-39	20 mm	1900 mm	6 mm	188 mm²/m	12 mm	6	10 mm	800 mm
RKS-SA/E-12,5-50	25 mm	2200 mm	7 mm	257 mm²/m	14 mm	6	10 mm	800 mm
RKS-SA/E-17,0-50	28 mm	2500 mm	8 mm	335 mm²/m	14 mm	6	12 mm	1000 mm
RKS-SA/E-22,0-50	28 mm	3000 mm	9 mm	424 mm²/m	16 mm	6	12 mm	1200 mm

BGW Transportanker - Typ: Aufstellanker


Stand: März 2014

BGW-Bohr GmbH Kastanienstraße 10 97854 Steinfeld

BGW Transportanker – Typ: Aufstellanker Verwendungsanleitung und Tragfähigkeitstabellen

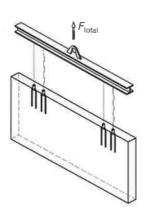
Seite 5 / 7

			Schräg	zuglast			Querz	uglast
Anker	Rand- bewehrung	Stee	ckbügelbewehr	ung	Schrägzugl	pewehrung	Querzugbewehrung	
Anker	Ø	Anzahl	Ø	Stablänge	Ø	Stablänge	Ø	Stablänge
	d _{S,R}	n	d _{S,B}	I _B	d _{s,s}	Is	d _{s,Q}	Ι _Q
RKS-SA/E-1,4-20	8 mm	4	6 mm	400 mm	6 mm	900 mm	10 mm	700 mm
RKS-SA/E-2,5-23	10 mm	4	8 mm	600 mm	8 mm	1200 mm	12 mm	800 mm
RKS-SA/E-4,0-27	12 mm	4	8 mm	800 mm	12 mm	1200 mm	14 mm	950 mm
RKS-SA/E-5,0-29	12 mm	4	10 mm	800 mm	12 mm	1550 mm	16 mm	1000 mm
RKS-SA/E-7,5-32	12 mm	4	10 mm	800 mm	14 mm	2000 mm	20 mm	1200 mm
RKS-SA/E-10,0-39	14 mm	6	10 mm	1000 mm	16 mm	2300 mm	20 mm	1500 mm
RKS-SA/E-12,5-50	16 mm	6	10 mm	1000 mm	20 mm	2300 mm	25 mm	1500 mm
RKS-SA/E-17,0-50	20 mm	8	10 mm	1100 mm	25 mm	2600 mm	25 mm	1800 mm
RKS-SA/E-22,0-50	25 mm	8	10 mm	1200 mm	25 mm	3000 mm	25 mm	1800 mm

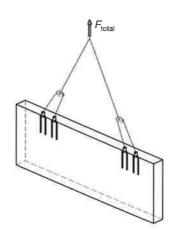
BGW Transportanker - Typ: Aufstellanker

Stand: März 2014

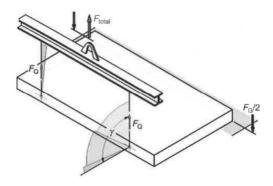
BGW-Bohr GmbH Kastanienstraße 10 97854 Steinfeld

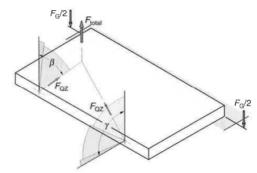

Verwendungsanleitung und Tragfähigkeitstabellen

Seite 6 / 7


5. Konstruktive Anforderungen

- Die Anker sind orthogonal und mit dem Aussparungskörper bündig zur Oberfläche einzubauen.
- Die Anker sind so einbauen, dass das Bauteil im Schwerpunkt zu heben ist. Keine Ankerpaare zulässig!
- Mindestabstände in alle Richtungen einhalten.
- Zulagebewehrung einbauen.
- Die Schrägzugbewehrung muss in die entgegengesetzte Lastrichtung weisen.
- Betonmindestanforderungen zum Zeitpunkt des Transports:
 Mindestbetonwürfeldruckfestigkeit: fcc,cube=15 N/mm², Mindestzugfestigkeit fcct=1,6 N/mm².


6. Einwirkungen


Bauteil mit Lasttraverse ohne Ausgleichsgehänge Anzahl der tragenden Anker n=2 (mit AG: n=4)

Bauteil mit Schrägseilgehänge und Ausgleichsrollen Anzahl der tragenden Anker n=4 (ohne AG: n=3)

Bauteil mit Lasttraverse beim Aufrichten (Querzuglast) Anzahl der tragenden Anker n=2, halbe Eigenlast wirkend

Bauteil mit Schrägseilgehänge beim Aufrichten (Querzuglast) Anzahl der tragenden Anker n=2, halbe Eigenlast wirkend

BGW-Bohr GmbHKastanienstraße 10
97854 Steinfeld

Verwendungsanleitung und Tragfähigkeitstabellen

Seite 7 / 7

Ankerlast Fo in Seilrichtung

Allgemein: $F_Q = (\psi_{dyn} \cdot F_G + F_{adh}) \cdot z / n$

1. Lastfall Abheben: $F_Q = (F_G + F_{adh}) \cdot z / n$

2. Lastfall Transport: $F_Q = \psi_{dyn} \cdot F_G \cdot z / n$

 F_G – Eigenlast der Betonschalen $F_G = V \cdot \gamma$ mit V – Schalenvolumen, $\gamma = 25$ kN/m³

 F_{adh} – Schalungshaftung F_{adh} = A · q_{adh} mit A – haftende Schalungsfläche

z – Schrägzugfaktor

 ψ_{dyn} – Dynamikfaktor $F_Q = Z \ (\beta \le 30^\circ) \ \text{oder S} \ (\beta > 30^\circ)$

n – Anzahl der tragenden Anker

Richtwerte für Schalungshaftung q_{adh}

Schalungsart	Schalungshaftung q _{adh}
geölte Stahlschalung	1,0 kN/m²
glatte Holzschalung	2,0 kN/m²
raue Holzschalung	3,0 kN/m²

Schalungshaftung F_{adh} in Abhängigkeit des Betonkörpertyps

Betonkörpertyp	Schalungshaftung F _{adh}
π -Platten	2 F _G
Rippendecken	3 F _G
Kassettendecken	4 F _G

Übliche Dynamikfaktoren Ψ_{dyn}

Randbedingung	Dynamikfaktor ψ _{dyn}
Turmdrehkran, Portalkran, Mobilkran	1,3
Heben und Transportieren auf ebenem Gelände	2,5
Heben und Transportieren auf unebenem Gelände	≥ 4,0

Schrägzugfaktor z

Neigung Seilgehänge	Schrägzugfaktor z
β = 20°	1,06
β = 30°	1,15
β = 45°	1,41
β = 60°	2,00

7. Bemessung

Lastfall Zentrischer Zug $\beta \le 30^\circ$: $\mathbf{F_Q} = \mathbf{Z} \le \mathbf{Z_{zul}}$ Lastfall Schrägzug $\beta > 30^\circ$: $\mathbf{F_Q} = \mathbf{S} \le \mathbf{S_{zul}}$ Lastfall Querzug $\gamma > 10^\circ$: $\mathbf{F_Q} = \mathbf{Q} \le \mathbf{Q_{zul}}$

8. Hinweise

- Die in den Tabellen angegeben Werte zu den Tragfähigkeiten, Mindestabmessungen, Mindestabständen und Bewehrungsquerschnitten wurden im Rahmen einer Entwurfsbemessung bestimmt und noch nicht im Rahmen der Erteilung einer Typenprüfung freigegeben.
- Als Lastabheber sind nur die BGW-Ringkupplungen der passenden Laststufe zulässig.
- Belastungen mit Schräggehängen sind nur bis zu einer Neigung von $\beta \le 60^{\circ}$ zulässig.
- Traversen-/Ausgleichsgehänge bei mehr als 2 Ankern in einer Ebene, bzw. bei mehr als 3 Ankern total sind zwingend erforderlich!

BGW Transportanker - Typ: Aufstellanker

Stand: März 2014

BGW-Bohr GmbH Kastanienstraße 10 97854 Steinfeld